前面我们介绍了Numpy的索引和选择操作,Pandas也具有类似的操作,这节我们将介绍Pandas对象的索引和选择操作。...Series数据选择 前面说过,Series有些操作类似一维Numpy数组,有些操作类似Python字典。...,所以Pandas提供了一些高级的索引器属性,这些索引器并不是函数,而是作为属性存在。...DataFrame数据选择 前面说过DataFrame既可以看做是二维数组,也可以看成Series结构的字典。...这些索引操作也可以用来赋值或者修改值: data.iloc[0, 2] = 90 其它常用索引 直接对DataFrame索引获取到的是列,而切片获取的则是行: data['Florida':'Illinois
Pandas 是我们经常使用的一种工具,用于处理数据,还有 seaborn 和 matplotlib用于数据可视化。...可以看到表示 NaN 值的空单元格。可以通过单击单元格并编辑其值来编辑数据。只需单击特定列即可根据特定列对数据框进行排序。在下图中,我们可以通过单击fare 列对数据框进行排序。...PandasGUI 中的过滤器 假设我们想查看 MSSubClass 的值大于或等于 120 的行。...上述查询表达式将是: Pandas GUI 中的统计信息 汇总统计数据为您提供了数据分布的概览。在pandas中,我们使用describe()方法来获取数据的统计信息。...PandasGUI 中的数据可视化 数据可视化通常不是 Pandas 的用途,我们使用 matplotlib、seaborn、plotly 等库。
有兴趣的可以公众号回复 "索引" 获取 演示原数据及 ipynb文件。 数据清洗中,我们经常需要从原始数据中通行列索引规则选择需要用于后续处理分析的数据,这便是本次的主要内容。 ?...数据清洗(通过索引选择数据) 1.索引设置 我们在使用pandas读取文件数据时,可以设定初始的索引。 这里我用之前 爬取过的 拉勾网产品经理岗位数据进行演示如下: ?...读取数据时指定索引 1.1.reindex reindex方法可以重新进行索引排序,如果某个索引值之前不存在则会引入缺失值。 ?...列索引 2.3.3.混合索引与函数式索引 ? 混合索引与函数式索引 2.3.4.布尔索引 布尔索引可以理解为条件判断,根据条件判断选择满足的数据,是我们在数据清洗中最常见的手段之一。...删除重复值 4.思考题 采取至少2种以上获取偶数行的方式
文章来源:Python数据分析 参考学习资料: http://pandas.pydata.org 1.什么是Pandas Pandas的名称来自于面板数据(panel data)和Python数据分析...Pandas是一个强大的分析结构化数据的工具集,基于NumPy构建,提供了 高级数据结构 和 数据操作工具,它是使Python成为强大而高效的数据分析环境的重要因素之一。...,它含有一组有序的列,每列可以是不同类型的值。...,又可以使用自定义索引,要视情况不同来使用, 如果索引既有数字又有英文,那么这种方式是不建议使用的,容易导致定位的混乱。...,可将其看作ndarray的索引操作 标签的切片索引是包含末尾位置的 ---- 4.Pandas的对齐运算 是数据清洗的重要过程,可以按索引对齐进行运算,如果没对齐的位置则补NaN,最后也可以填充
import numpy as np import pandas as pd 一、元组作为一级索引 如果想产生如下图所示的学生成绩表: 因为 DataFrame 的行索引/列索引要求是不可变的,因此考虑使用元组做索引是很自然的选择...小结:无论基于行索引还是列索引选取数据,只要没指定最高级索引,则必须使用.loc[行索引,列索引]的形式。 2、基于行索引选取数据 基于行索引选取数据,必须使用.loc[]的形式。...# 基于行的单个第1层索引值选取数据 scores.loc[2017] # 基于行的多个第1层索引值选取数据 scores.loc[[2017,2016]] # 基于行的单个第2层索引值选取数据 scores.loc...[(slice(None),2),:] # 不能写成scores.loc[(slice(None),2)]或scores.loc[slice(None),2]的形式 # 基于行的多个第2层索引值选取数据...,例如#4处);注意:loc行选择器不能省略,因为只要包含行索引,一定要使用行选择器loc或iloc,而选择列索引则不需要!
本文主要是关于pandas的一些基本用法。 #!.../usr/bin/env python # _*_ coding: utf-8 _*_ import pandas as pd import numpy as np # Test 1 # 定义数据...10 11 2017-01-04 12 13 14 15 2017-01-05 16 17 18 19 2017-01-06 20 21 22 23 # Test 2 # 选择第一列数据...print df['A'] print df.A # 选择前三行数据 print df[0:3] print df['20170101':'20170103'] # 根据标签选择 print df.loc...print df.iloc[3:5, 1:3] # 不连续的选择 print df.iloc[[1, 3, 5], 2:4] # 混合选择 print df.ix[[1, 3, 5], ['A',
这里我们稍微讨论一下CBO对于Cost值相同的索引的选择,可能会有朋友认为在同样Cost的情况下,Oracle会按照索引名的字母顺序来选择索引,实际上并不完全是这样,CBO对于Cost值相同的索引的选择和...See Bug 6734618 这意味着对于Oracle 10gR2及其以上的版本,CBO对于Cost值相同的索引的选择实际上会这样: 1-如果Cost值相同的索引的叶子块数量不同,则Oracle会选择叶子块数量较少的那个索引...; 2-如果Cost值相同的索引的叶子块数量相同,则Oracle会选择索引名的字母顺序在前面的那个索引。...Oracle会选择索引名的字母顺序在前面的那个索引。...会选择叶子块数量较少的那个索引。
Pandas的style用法在大多数教程中见的比较少,它主要是用来美化DataFrame和Series的输出,能够更加直观地显示数据结果。...首先导入相应的包和数据集 import pandas as pd import numpy as np data = data = pd.read_excel('....突出显示特殊值 style还可以突出显示数据中的特殊值,比如高亮显示数据中的最大(highlight_max)、最小值(highlight_min)。...按照往常的思路,可以用可视化的形式绘制出来,但是这样稍显复杂,使用sparklines则可以简单达到这种效果。...sparklines的功能还是挺Cool挺实用的,更具体的用法可以去看看sparklines的文档。 参考资料:https://pbpython.com/styling-pandas.html
Python pandas库提供了几种选择和过滤数据的方法,如loc、iloc、[]括号操作符、query、isin、between等等 本文将介绍使用pandas进行数据选择和过滤的基本技术和函数。...无论是需要提取特定的行或列,还是需要应用条件过滤,pandas都可以满足需求。 选择列 loc[]:根据标签选择行和列。...提供了很多的函数和技术来选择和过滤DataFrame中的数据。...比如我们常用的 loc和iloc,有很多人还不清楚这两个的区别,其实它们很简单,在Pandas中前面带i的都是使用索引数值来访问的,例如 loc和iloc,at和iat,它们访问的效率是类似的,只不过是方法不一样...如果有看到的话说明这个代码已经很好了,并且完全可以使用iloc替代。 最后,通过灵活本文介绍的这些方法,可以更高效地处理和分析数据集,从而更好地理解和挖掘数据的潜在信息。
包括如何导入数据集以及浏览,选择,清理,索引,合并和导出数据等常用操作的函数使用,这是一个很好的快速入门指南,如果你已经学习过pandas,那么这将是一个不错的复习。...也就是说,500意味着在调用数据帧时最多可以显示500列。 默认值仅为50。此外,如果想要扩展输显示的行数。...df.info():提供数据摘要,包括索引数据类型,列数据类型,非空值和内存使用情况。 df.describe():提供描述性统计数据。....unique():返回'Depth'列中的唯一值 df.columns:返回所有列的名称 选择数据 列选择:如果只想选择一列,可以使用df['Group']....要选择多个列,可以使用df[['Group', 'Contour', 'Depth']]。 子集选择/索引:如果要选择特定的子集,我们可以使用.loc或.iloc方法。
index_col 接收int、sequence或者False,表示索引列的位置,取值为sequence则代表多重索引,默认为None dtype 接收dict,代表写入的数据类型(列名为key,数据格式为...=object) 2、选择多列 # 选择多列 df[['name','Q1']].head(6) (四)选择多行多列 1、使用位置索引器iloc 选择行的方法主要基于把 DataFrame 看成二维数组的观点...选择多行多列,使用位置索引器iloc,行列下标的位置上都允许切片和花式索引。 df.iloc[3:5,[0,2]] 为了使用标签索引,需要先判断name列的取值是否唯一。判断姓名是否有重名。...df.set_index('name',inplace=True) df.head(10) 2、使用标签索引器loc 选择多行多列,使用标签索引器loc,行列下标的位置上都允许切片和花式索引。...中索引值以字母'A'开头的所有行,并选择'team'列: # 带条件筛选 df.loc[df.index.str.startswith('A'),'team'] 2、选择 DataFrame df中索引值以字母
据不靠谱的数据来源统计,学习了Pandas的同学,有超过60%仍然投向了Excel的怀抱,之所以做此下策,多半是因为刚开始用Python处理数据时,选择想要的行和列实在太痛苦,完全没有Excel想要哪里点哪里的快感...01 基于位置(数字)的索引 先看一下索引的操作方式: ? 我们需要根据实际情况,填入对应的行参数和列参数。 场景一(行选取) 目标:选择“流量来源”等于“一级”的所有行。...02 基于名称(标签)的索引 为了建立起横向对比的体感,我们依然沿用上面三个场景。 场景一:选择一级渠道的所有行。...在loc方法中,我们可以把这一列判断得到的值传入行参数位置,Pandas会默认返回结果为True的行(这里是索引从0到12的行),而丢掉结果为False的行,直接上例子: ?...此处插播一条isin函数的广告,这个函数能够帮助我们快速判断源数据中某一列(Series)的值是否等于列表中的值。
所谓索引的选择性(Selectivity),是指不重复的索引值(也叫基数,Cardinality)与表记录数(#T)的比值: Index Selectivity = Cardinality / #T 显然选择性的取值范围为...0.0001(精确值为0.00001579),所以实在没有什么必要为其单独建索引。...有一种与索引选择性有关的索引优化策略叫做前缀索引,就是用列的前缀代替整个列作为索引key,当前缀长度合适时,可以做到既使得前缀索引的选择性接近全列索引,同时因为索引key变短而减少了索引文件的大小和维护开销...下面以employees.employees表为例介绍前缀索引的选择和使用。...前缀索引兼顾索引大小和查询速度,但是其缺点是不能用于ORDER BY和GROUP BY操作,也不能用于Covering index(即当索引本身包含查询所需全部数据时,不再访问数据文件本身)。
/img/00024.jpeg)] 工作原理 要从数据帧中选择列的子集,请使用特定列名称的列表。...此外,pandas 允许其用户通过行和列的整数位置选择数据。 这种双重选择功能(一种使用标签,另一种使用整数位置)使得强大而又令人困惑的语法可以选择数据子集。....iloc和.loc索引器选择任一维度中的序列和数据帧的子集。...该序列传递给索引运算符,该运算符对数据进行子集化。 可以通过将同一列移到索引,并简单地将基本的基于标签的索引选择与.loc一起使用来复制此过程。 通过索引选择比布尔选择快得多。...assert_frame_equal的官方文档 Python assert语句的官方文档 使用布尔值,整数位置和标签进行选择 第 4 章,“选择数据子集”涵盖了有关通过.iloc和.loc索引器选择不同数据子集的各种方法
在进一步分析为什么MySQL数据库索引选择使用B+树之前,我相信很多小伙伴对数据结构中的树还是有些许模糊的,因此我们由浅入深一步步探讨树的演进过程,在一步步引出B树以及为什么MySQL数据库索引选择使用...,则右子树的值均大于于根节点的值; 3、任意节点的左右子树也分别是二叉查找树; 4、没有键值相等的节点; ?...,似乎我们还没有摸到MySQL为什么要使用B+树作为索引的实现,不要急,接下来我们就先探讨一下什么是B树。...(且链表中的关键字恰好是有序的); 5、非叶子节点相当于是叶子节点的索引(稀疏索引),叶子节点相当于是存储(关键字)数据的数据层; 6、更适合于文件系统; ?...(通常取最小值m=3,此时B-树中每个内部结点可以有2或3个孩子,这种3阶的B-树称为2-3树)。 七、为什么说B+树比B树更适合数据库索引?
B树应用 主要用于文件系统以及部分数据库索引(MongoDB) 而Mysql是用B+树的。...既然hash比B+树更快,为什么mysql用B+树来存储索引呢? 答:一、从内存角度上说,数据库中的索引一般时在磁盘上,数据量大的情况可能无法一次性装入内存,B+树的设计可以允许数据分批加载。...二、从业务场景上说,如果只选择一个数据那确实是hash更快,但是数据库中经常会选中多条这时候由于B+树索引有序,并且又有链表相连,它的查询效率比hash就快很多了。...答:这样会形成一个有序数组,文件系统和数据库的索引都是存在硬盘上的,并且如果数据量大的话,不一定能一次性加载到内存中。...答:这个跟它的使用场景有关,B+树在数据库的索引中用得比较多,数据库中select数据,不一定只选一条,很多时候会选中多条,比如按照id进行排序后选100条。
在pandas中怎么样实现类似mysql查找语句的功能: select * from table where column_name = some_value; pandas中获取数据的有以下几种方法...: 布尔索引 位置索引 标签索引 使用API 假设数据如下: import pandas as pd import numpy as np df = pd.DataFrame({'A': 'foo bar...位置索引 使用iloc方法,根据索引的位置来查找数据的。...使用API pd.DataFrame.query方法在数据量大的时候,效率比常规的方法更高效。...数据提取不止前面提到的情况,第一个答案就给出了以下几种常见情况:1、筛选出列值等于标量的行,用== df.loc[df['column_name'] == some_value] 2、筛选出列值属于某个范围内的行
今天我们来聊一下Pandas当中的数据集中带有多重索引的数据分析实战 通常我们接触比较多的是单层索引(左图),而多级索引也就意味着数据集当中的行索引有多个层级(右图),具体的如下图所示 AUTUMN...导入数据 我们先导入数据与pandas模块,源数据获取,公众号后台回复【多重索引】就能拿到 import pandas as pd ## 导入数据集 df = pd.read_csv('dataset.csv...') df.head() output 该数据集描述的是英国部分城市在2019年7月1日至7月4日期间的全天天气状况,我们先来看一下当前的数据集的行索引有哪些?...()方法,代码如下 df.reset_index() 下面我们就开始针对多层索引来对数据集进行一些分析的实战吧 第一层级的数据筛选 在pandas当中数据筛选的方法,一般我们是调用loc以及iloc方法...对于多层级索引的数据集而言,调用xs()方法能够更加方便地进行数据的筛选,例如我们想要筛选出日期是2019年7月4日的所有数据,代码如下 df.xs('2019-07-04', level='Date
二、数据选择 在本章中,我们将学习使用 Pandas 进行数据选择的高级技术,如何选择数据子集,如何从数据集中选择多个行和列,如何对 Pandas 数据帧或一序列数据进行排序,如何过滤 Pandas 数据帧的角色...首先,我们将学习如何从 Pandas 数据帧中选择数据子集并创建序列对象。 我们将从导入真实数据集开始。...我们学习了 Pandas 数据选择的各种技术,以及如何选择数据子集。 我们还学习了如何从数据集中选择多个角色和列。 我们学习了如何对 Pandas 数据帧或序列进行排序。...三、处理,转换和重塑数据 在本章中,我们将学习以下主题: 使用inplace参数修改 Pandas 数据帧 使用groupby方法的场景 如何处理 Pandas 中的缺失值 探索 Pandas 数据帧中的索引...最后,我们看到了一些使我们可以使用索引进行数据选择的方法。 在下一节中,我们将学习如何重命名 Pandas 数据帧中的列。
在数据分析工作中,Pandas 的使用频率是很高的,一方面是因为 Pandas 提供的基础数据结构 DataFrame 与 json 的契合度很高,转换起来就很方便。...数据清洗 数据清洗是数据准备过程中必不可少的环节,Pandas 也为我们提供了数据清洗的工具,在后面数据清洗的章节中会给你做详细的介绍,这里简单介绍下 Pandas 在数据清洗中的使用方法。...数据量大的情况下,有些字段存在空值 NaN 的可能,这时就需要使用 Pandas 中的 isnull 函数进行查找。...标准差 argmin() 统计最小值的索引位置 argmax() 统计最大值的索引位置 idxmin() 统计最小值的索引值 idxmax() 统计最大值的索引值...(例如0),或者用于指定每个索引(对于Series)或列(对于DataFrame)使用哪个值的Dict /Series / DataFrame。
领取专属 10元无门槛券
手把手带您无忧上云