首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    【RNA】万字综述:生命的起源于RNA?

    达尔文的断言:“目前关于生命起源的思考纯粹是废话”,现在已经不再成立。通过综合生命起源(OoL)研究,从其开始到最近的发现,重点关注(i)原生物化学合成的原理证明和(ii)古代RNA世界的分子遗迹,我们提供了科学对OoL和RNA世界假说的全面最新描述。基于这些观察,我们巩固了这样的共识:RNA在编码蛋白质和DNA基因组之前演化,因此生物圈从一个RNA核心开始,在RNA转录和DNA复制之前产生了大部分的翻译装置和相关RNA结构。这支持了这样的结论:OoL是一个渐进的化学演化过程,涉及一系列介于原生物化学和最后的普遍共同祖先(LUCA)之间的过渡形式,其中RNA起到了核心作用,沿着这条路径的许多事件及其相对发生顺序是已知的。这一综合性合成的本质还扩展了以前的描述和概念,并应有助于提出关于古代RNA世界和OoL的未来问题和实验。

    02

    N. Engl. J. Med. | 人工智能在分子医学中的应用

    新的方法,如基因组测序和质谱技术,大大增加了科学家和医疗专业人员获取更精确诊断和增强治疗精准度所需的分子数据的数量。虽然在DNA和RNA的基因测序方面取得了最大的进展,但蛋白质和代谢物高维度测量的医疗应用也在增加。为了适应这些分子“大数据”的数量、速度和多样性,分析工具也得到了改进。机器学习的出现被证明特别有价值。在这些方法中,计算机系统使用大量数据构建预测性统计模型,并通过整合新数据进行迭代改进。深度学习是机器学习的一个强大子集,其中包括使用深度神经网络,已在图像对象识别、语音识别、自动驾驶和虚拟助理等领域具有高知名度的应用。现在,这些方法正在医学领域应用,以提供临床指导性的医疗信息。在这篇综述文章中,作者简要描述了生成高维分子数据的方法,然后重点介绍了机器学习在这些数据的临床应用中扮演的关键角色。

    02

    Nat. Commun. | 深度学习探索可编程RNA开关

    今天给大家介绍的是一篇发表在Nature Communications 的文章“A deep learning approach to programmable RNA switches”,工程RNA元件是能够检测小分子、蛋白质和核酸(合成生物学成分)的可编程工具。增强深度学习的模式识别可以用于预测合成生物学成分。本文用深度神经网络(DNN)来预测合成生物学中的经典核糖开关模型——toehold开关。为了促进DNN训练,作者在体内合成并表征了涵盖23个病毒基因组和906个人类转录因子的91,534个toehold开关的数据集。经过核苷酸序列训练的DNN表现(R 2  = 0.43–0.70)优于前沿的热力学和动力学模型(R 2 = 0.04–0.15),且允许实行人类可理解的注意力可视化(VIS4Map)识别成功和失败的模式。本文研究表明深度学习方法可用于RNA合成生物学中的功能预测。

    05

    Nat. Rev. Drug. Discov. | 以小分子靶向RNA结构

    今天为大家介绍的是来Robert T. Batey 和Matthew D. Disney的一篇关于靶向RNA小分子的论文。RNA在人类生物学中是3D形态,赋予不同的功能角色,并在疾病中导致功能障碍。目前正在积极追求利用小分子治疗性地靶向RNA结构的方法,其中包括预测进化保守的RNA结构的计算工具的发展,以及扩展作用方式并促进与细胞机制的相互作用的策略。现有的RNA靶向小分子使用一系列机制,包括通过与细胞蛋白作为分子黏合剂来定向剪接,抑制难以药物化的蛋白质的翻译和停用非编码RNA中的功能结构。在这里,作者描述了识别、验证和优化靶向功能转录组的小分子的策略,为将这些药物推进到未来十年制定了路线图。

    04

    AlphaFold3及其与AlphaFold2相比的改进

    蛋白质结构预测是生物化学中最重要的挑战之一。高精度的蛋白质结构对于药物发现至关重要。蛋白质结构预测始于20世纪50年代,随着计算方法和对蛋白质结构的认识不断增长。最初主要采用基于物理的方法和理论模型。当时的计算能力有限,这些模型往往难以成功地预测大多数蛋白质的结构。蛋白质结构模型的下一个发展阶段是同源建模,出现在20世纪70年代。这些模型依赖于同源序列具有相似结构的原理。通过将目标序列与已知结构的模板序列进行多序列比对,首次成功地确定了以前未解决的序列的结构。然而,这些模型的分辨率仍然有限。20世纪80年代出现了从头开始的方法,带来了下一个分辨率提升。这些方法应用了基于物理的技术和优化算法。结合计算技术的进步,这导致了蛋白质结构预测的显著改进。为了对所有这些新方法进行基准测试,从90年代初开始了蛋白质结构预测技术评估的关键阶段(CASP)系列活动。近年来,机器学习和深度学习技术已经越来越多地集成到蛋白质结构预测方法中,尤其是自2007年以来使用长短期记忆(LSTM)以来。

    01

    Nat. Com. Sci.|使用RaptGen发现生成核酸适配体

    本文介绍由日本早稻田大学、计算生物大数据开放创新实验室、日本医学院的Michiaki Hamada教授团队发表在Nature Computational Science的研究成果。作者开发了一种变分自编码器模型(RaptGen)用于生成核酸适配体。RaptGen利用一个轮廓隐藏的马尔可夫(HMM)模型解码器来有效地表示motif序列。作者证明了RaptGen在motif信息的基础上将模拟序列数据嵌入到低维潜在空间中,并使用两个独立的SELEX数据集进行了序列嵌入。RaptGen成功地从潜在空间生成了适配体,模型还可以通过一个较短的学习模型生成一个截断的适配体。并且证明了RaptGen可以根据贝叶斯优化应用于活性引导的适配体生成。

    02
    领券