在本文结尾,读者可以找到文中提到的代码的JupyterNotebook。
从NumPy开始:
NumPy是使用Python进行科学计算的基本软件包。...])np.clip(x,2,5)
array([3, 5, 5, 5, 2, 2, 5, 5, 2, 2, 5, 2])
4. extract()
顾名思义,extract() 函数用于根据特定条件从数组中提取特定元素...Pandas非常适合许多不同类型的数据:
具有异构类型列的表格数据,例如在SQL表或Excel电子表格中
有序和无序(不一定是固定频率)的时间序列数据。
...具有行和列标签的任意矩阵数据(同类型或异类)
观察/统计数据集的任何其他形式。实际上,数据根本不需要标记,即可放入Pandas数据结构。
...以下是Pandas的优势:
轻松处理浮点数据和非浮点数据中的缺失数据(表示为NaN)
大小可变性:可以从DataFrame和更高维的对象中插入和删除列
自动和显式的数据对齐:在计算中,可以将对象显式对齐到一组标签