首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Self-supervised Image Enhancement Network Training with Low Light Images Only

    现有的图像增强数据集都是通过合成或者调整曝光时间得到的,但存在两个问题:①如何确保预先训练的网络可以用于不同设备、不同场景和不同照明条件下收集的图像,而不是构建新的训练数据集。②如何确定用于监督的正常光图像是最好的,因为相对于一张低光照图像,我们可以得到很多的正常光图像。 为了解决上述问题,本文基于信息熵理论和Retinex模型,提出了第一篇基于深度学习的完全自监督做图像增强的论文,本文提出的网络不用成对的数据集,只需要低光照图像(甚至只要一张低光照图像),训练时间为分钟级(minute-level),可以取得实时的性能。该网络将低光照图像分解为反射部分和照度部分,其中反射部分即为增强后的结果。 本文的理论来源:根据信息熵理论,直方图均匀分布的图像熵最大,信息量最大。基于这一点,本文提出了一个假设,即增强后图像最大通道的直方图分布应与直方图均衡化后的低光照图像最大通道的直方图分布一致。有了这一假设,损失函数的设计就不需要正常光图像,不仅保留了增强后图像的真实性,而且包含充足的信息。作者认为,该方法对低亮度图像的获取没有任何依赖,且训练过程完全self-supervised,因此本文提出的方法具有良好的泛化能力,即使预训练的网络对于新的环境结果不是很好,也可以通过重新训练或者微调的方式改善。 基于最大熵的Retinex模型,其理论来源如下,根据Retinex理论,图像可以分解成反射和照度部分,即

    03

    Deep Retinex Decomposition for Low-Light Enhancement

    Retinex模型是微光图像增强的有效工具。假设观测图像可以分解为反射率和光照。大多数现有的基于retinx的方法都为这种高度病态分解精心设计了手工制作的约束条件和参数,当应用于各种场景时,可能会受到模型容量的限制。在本文中,我们收集了一个包含低/正常光图像对的低光数据集(LOL),并提出了在该数据集上学习的深度视网膜网络,包括用于分解的解分解网和用于光照调整的增强网。在解压网络的训练过程中,分解的反射率和光照没有ground truth。该网络仅在关键约束条件下学习,包括成对低/正常光图像共享的一致反射率和光照的平滑度。在分解的基础上,通过增强网络对光照进行亮度增强,联合去噪时对反射率进行去噪操作。Retinex-Net是端到端可训练的,因此学习的分解本质上有利于亮度调整。大量实验表明,该方法不仅在弱光增强方面具有良好的视觉效果,而且能很好地表征图像的分解。

    02

    AIoT应用创新大赛-植物生长分析仪

    传统的豆芽生长设备,只是完成豆芽的生长过程。相对于其他市面上的自动豆芽生长器,它只是简单的进行循环浇水,保持湿度,保持恒温。然后用遮光布遮光,持续到豆芽长成豆苗。对于豆芽的生长健康状态从不关心。并且如果豆芽死了。它也没有任何反馈。就只能重新种植。本设计豆芽生长状态分析仪主要是跟踪豆芽生长的全过程。可以随时观察豆芽的生长因素参数。将温度,湿度,co2,照度实时进行采集。并绘画成生长曲线。我们将和正常曲线进行对比。如果曲线出现偏差,进行及时报警提醒没有任何状态监控。在生长过程中,如果出现豆芽生长环境因素恶劣情况,经进行报警提醒。同时此仪器可以通过网络告知大家豆芽此刻处于生长阶段的哪个阶段,比如幼苗期,萌芽期等。所以不需要人实时去观察豆芽处于哪个生长阶段。

    04

    光照度和光强度的区别_光照度勒克斯一般多大好

    在光度学中是没有“光强”这样一个概念的。常用的光学量概念有发光强度、光照度、光出射度和光亮度。“光强”只是一个通俗的说法,很难说对应哪一个光度学概念。以上所说的几个概念都是有严格的物理定义的: 发光强度:光源在单位立体角内发出的光通量,单位是坎德拉,即每球面度1流明。 光照度:被照明面单位面积上得到的光通量,单位是勒克斯,即每平方米1流明。 光出射度:光源单位面积上发出的光通量,单位与光照度相同。 光亮度:单位面积上沿法线方向的发光强度,或称单位面积在其法线方向上单位立体角内发出的光通量,单位是尼特,即每平方米每球面度1流明。 由于发光强度、光亮度与方向有关,容易推导出:各个方向上光亮度相同的光源其发光强度是方向的余弦函数,在法线方向上发光强度最大,称为余弦辐射体,也叫朗伯光源。各个方向上发光强度都相等的光源其光亮度就是不等的。 发光强度、光出射度和光亮度都是表示光源的发光的发光特性的。楼上所说考虑太阳到地球距离的平方是将太阳当成点光源,利用地面上的照度计算太阳的发光强度。而把太阳朝向地球的这一面作为一个面光源,再除以这个面积就是太阳在与地球连线方向的光亮度。当然这与太阳直接发光的发光强度或光亮度相比是有下降的,因为太阳光经过大气还要衰减的。 这些光学量都用到光通量,光通量是与辐射能通量相对应的光学量,因为光是一种电磁辐射。不同波长的电磁波1瓦的辐射能通量所相当的光通量是不一样的,换算到光通量要考虑人眼的光谱灵敏度曲线,即人眼对不同波长同样的辐射能通量所感受到的光是不一样的,如红外光、微波、紫外光等人眼是看不见的,而400nm到760nm波长的可见光是人眼能看得见的。 在物理光学中也提到“光强”,是用麦克斯韦方程组解出光的电矢量,电场强度的平方就是物理光学中的光强,主要用于计算干涉、衍射效应得到的图形。 在光学各相关学科中光强度是一个比较含糊的概念,不同的分支有不同的说法,有的等同于发光强度,有的等同于光照度,有的等同于光亮度。而光度学中这几个概念是有严格的物理意义的。 由于地面上的照度是由天空及地球上整个环境包括天空各部分的亮度、地面上其他反射体反射、散射而得到的光亮度综合产生的照度,所以难以用一个直接的公式进行计算。不过可以借助成像光学系统来实现您的想法,可以用一个照相物镜,或者简单点用一个放大镜也行,将某一部分光源例如天空或别的什么成像于像面上,将照度计置于像面测得照度E,则E=1/4πKL(D/f’)2。公式中的2是平方,应该是上标的,这里打不出来。K是光学系统的透过率,L就是你要求的亮度,D是你的成像系统的通光口径,f’是成像系统的焦距。如果是照相物镜,D/f’就是光圈数的倒数。利用这个公式就可以从照度换算到亮度。这个公式用于计算对无穷远成像时像面的照度或已知照度反过来求无穷远物的亮度。

    06

    BH1750光照传感器超详细攻略(从原理到代码讲解,看完你就懂了)

    之所以写这篇文章,原因有两个。 一是:有个师弟跟我说我发布的文章都偏向于工作者,能不能写一些大学生能用到的东西,我想了一下,确实是,我写的文章大多是我在工作中总结出来的心得,对于初学者来说确实有点难以理解。 二是:我觉得这个光照传感器很多大学生都能用到,但是网上的教程虽多却也不一定能够帮助大家深入了解这款传感器。大家更多的是看完攻略之后能够驱动,但是其实并不了解它的工作原理,想要在光照传感器的基础上增加别的功能也无从下手。 所以,我觉得我还是有必要写一篇更加详细更加深入的攻略来帮助大家理解。我觉得能驱动一个芯片和会驱动一个芯片是不一样的,如果你学会了如何去驱动一个芯片,那么换了别的类似的芯片你也能够得举一反三。不然的话你每次换一个芯片都只能去找人家写好的代码。 好了,废话不多说了,BH1750的讲解马上开始。(注:请一定要从头到尾看下去,粗略看一下也行,因为内容是环环相扣的,一直看,一直爽!!!) 我再多说一句,就一句,真的,接下来我讲的所有代码以及相关的所有文件都可以免费发给你们,链接在文章底部,自己去下载吧。

    03
    领券