本文介绍了一种定义在图上聚类算法-谱聚类。首先介绍谱聚类其实是保持图上节点之间的相似性对节点进行向量表示。然后介绍了谱聚类的目标函数-最小化原始相似性矩阵与样本向量表示,相似性的乘积,由此导出谱聚类与拉普拉斯矩阵的关系。最后介绍了谱聚类算法特点,其实际为成对相似性保持(pair-wise)算法。
来源:ScienceAI本文约1800字,建议阅读9分钟如何迫使深度度量学习模型首先学习好的特征? 如果使用不平衡的数据集训练机器学习模型,比如一个包含远多于肤色较浅的人的图像的数据集,则当模型部署在现实世界中时,该模型的预测存在严重风险。 但这只是问题的一部分。麻省理工学院的研究人员发现,在图像识别任务中流行的机器学习模型在对不平衡数据进行训练时实际上会编码偏差。即使使用最先进的公平性提升技术,甚至在使用平衡数据集重新训练模型时,模型中的这种偏差也无法在以后修复。 因此,研究人员想出了一种技术,将公平性
大数据文摘转载自数据派THU 如果使用不平衡的数据集训练机器学习模型,比如一个包含远多于肤色较浅的人的图像的数据集,则当模型部署在现实世界中时,该模型的预测存在严重风险。 但这只是问题的一部分。麻省理工学院的研究人员发现,在图像识别任务中流行的机器学习模型在对不平衡数据进行训练时实际上会编码偏差。即使使用最先进的公平性提升技术,甚至在使用平衡数据集重新训练模型时,模型中的这种偏差也无法在以后修复。 因此,研究人员想出了一种技术,将公平性直接引入模型的内部表示本身。这使模型即使在不公平数据上进行训练也能产生公
摘要:余弦相似度是两个向量之间角度的余弦值,或者说是两个向量归一化之间的点积。一种流行的应用是通过将余弦相似度应用于学习到的低维特征嵌入来量化高维对象之间的语义相似性。在实践中,这可能比嵌入向量之间的非归一化点积效果更好,但有时也会更糟。为了深入了解这一经验观察结果,我们研究了由正则化线性模型推导出的嵌入,其中的闭式解法有助于分析。我们通过分析推导出余弦相似性如何产生任意的、因此毫无意义的 "相似性"。对于某些线性模型,相似性甚至不是唯一的,而对于其他模型,相似性则受正则化的隐性控制。我们讨论了线性模型之外的影响:在学习深度模型时,我们采用了不同的正则化组合;在计算所得到的嵌入的余弦相似度时,这些正则化组合会产生隐含的、意想不到的影响,使结果变得不透明,甚至可能是任意的。基于这些见解,我们提醒大家不要盲目使用余弦相似度,并概述了替代方法。
本文介绍了K-means聚类算法。首先介绍了K-means算法是一种原型聚类算法,其类表示为类中心点,常用欧式距离作为相似性度量。然后由类内紧致准则给出了Kmeans的目标函数及算法流程,指出了Kmeans是一种基于硬划分的聚类算法,同时介绍了一种基于软划分(概率划分)的模糊C均值算法。最后介绍了Kmeans算法的特点,线性复杂度,初始值选取敏感,相似性度量需要结合应用场景。
在刚刚过去的一个学期里,基本水逆了一整个学期,这学期基本没干什么活,就跟RCNN杠上了。首先是看论文,然后是网上找tensorflow写好的源码。但是,可惜的是网上给出的源码基本上是RCNN的主要作者Ross Girshick大神的代码,不同数据集换了下。因此为了理解源码,RCNN的处理过程,费劲去装了个ubuntu和win10的双系统并在Ubuntu上安装caffe,这就花费了近2周的时间。快速研究完RCNN的caffe源码之后,才转过来手写Fast RCNN的tensorflow版本的代码,这也花费了大量的时间,从踩坑到填坑再到踩坑。RCNN不是很好实现,SVM至今还没怎么看懂。接下来将会陆续更新RCNN->Fast RCNN->Faster RCNN系列的文章。在这篇文章中,主要讲解RCNN与Fast RCNN中获取图片中物体真实目标检测框的算法——选择性搜索算法。
相似性度量在机器学习中起着至关重要的作用。这些度量以数学方式量化对象、数据点或向量之间的相似性。理解向量空间中的相似性概念并采用适当的度量是解决广泛的现实世界问题的基础。本文将介绍几种常用的用来计算两个向量在嵌入空间中的接近程度的相似性度量。
上节课我们简单介绍了推荐系统的总体框架思路,从本节课开始我们将对推荐系统中的核心算法进行详细讲解。在目前主流的推荐算法中,使用最多也是最经典的,当属协同过滤算法!
特征提取在提高分类的准确性中起着非常关键的作用. 对时序特征提取的方法进行归纳分类, 将有利于对特征提取整体性, 全面性的认识. 回顾现有的时间序列中特征提取的方法, 将其总结为四大类, 它们分别是基于基本统计方法的特征提取、基于模型的特征提取、基于变换的特征提取、基于分形维数的特征提取。
本文介绍了层次聚类算法。首先抛出了聚类理论中两个关键问题:何为类,何为相似,同时介绍了聚类中常用两种评价指标:内部指标和外部指标。然后介绍了层次聚类算法:凝聚层次聚类和分裂层次聚类算法,两者皆以样本集作为类表示,常用欧式距离作为相似性度量,分层次聚类。最后介绍了层次聚类算法的特点,可视化,复杂度。
异质信息网络被定义为一个有向图,它包含有多种类型的对象或者关系,每个对象属于一个特定的对象类型,每条关系属于一个特定的关系类型。
AdderNet: DoWe Really Need Multiplications in Deep Learning? CVPR2020 https://arxiv.org/abs/1912.1
相似性度量算法在局域网监控软件中的应用是非常广泛的!就像网络的小助手,可以帮管理员更轻松地搞定设备和流量的事情,还可以让网络更稳、更快、更安全。接下来就让我们一起来探索相似性度量算法在局域网监控软件中的应用吧:
与简单的加法运算相比,乘法运算具有更高的计算复杂度。深度神经网络中广泛使用的卷积正好是来度量输入特征和卷积滤波器之间的相似性,这涉及浮点值之间的大量乘法。现在作者提出了加法网络(AdderNets)来交换深度神经网络中的这些大规模乘法,特别是卷积神经网络(CNNs),以获得更简易的加法以降低计算成本。
CVPR2020收录的结果已经早早公布,想必很多同学都有知晓一些,“计算机视觉战队”今天从中又挑选了一篇目标检测类的文献,和大家分享这篇文献中的新算法框架!
随着数据量的迅速增加如何对大规模数据进行有效的聚类成为挑战性的研究课题,面向大数据的聚类算法对传统金融行业的股票投资分析、 互联网金融行业中的客户细分等金融应用领域具有重要价值, 本文对已有的大数据聚类算法,以及普通聚类算法做一个简单介绍
【导读】本文使用Python实现简单的推荐系统,分别实践了基于用户和基于商品的推荐系统,代码使用sklearn工具包实现。除了代码实现外,还分别从理论上介绍了两种推荐系统原理:User-Based Collaborative Filtering 和 Item-Based Collaborative Filtering,并讲解了几种常见的相似性度量方法及它们分别适用场景,还实现了推荐系统的评估。最终分析两种推荐系统的优劣,说明混合推荐技术可能具有更好的性能。 作者 | Chhavi Saluja 编译 | 专
本文介绍了一种无参的密度聚类算法-DBSCAN。首先介绍了DBSCAN的类表示为一簇密度可达的样本点,相似性度量为密度可达。然后介绍了DBSCAN中几个基本定义: -邻域,核心对象,密度可达,密度直达,噪声点,基于此绍了DBSCAN算法的实现流程。最后介绍了算法的特点,能发现任意簇,抗噪性强,聚类时间长,存在维度灾难问题。
---- 新智元专栏 作者:范登平(南开大学) 【新智元导读】南开大学媒体计算实验室等研究团队从人类视觉系统对场景结构非常敏感的角度出发,提出一种新颖、高效且易于计算的结构性度量 (S-measure) 来评估非二进制前景图,进而使得评估不需要像传统AUC曲线那样通过繁琐且不可靠的多阈值化来计算精度、召回率,仅通过简单的计算(5.3ms)就可以得到非常可靠的评价结果,成为该领域第一个简单的专用评价指标。相关研究已被ICCV 2017录用为spotlight paper,第一作者南开大学博士生范登
一句话评价: 这可能是市面上(包括国外出版的)你能找到最好的讲python自然语言处理的书了
时间序列的聚类在时间序列分析中是非常重要的课题,在很多真实工业场景中非常有用,如潜在客户的发掘,异常检测,用户画像构建等。不同于一般样本聚类方式,时间序列因为其独特的时变特性,很多研究者都在探寻如何对其轨迹进行聚类。
对比自监督学习(CLS)是从无标签数据中选择和对比Anchor,Positive,Negative(APN)三种特征,学习到有用表征的方法。
模板匹配是一个图像处理问题,当对象的姿势(X、Y、+)未知时,它使用模板图像在另一个搜索图像中查找其位置。在这篇文章中,我们实现一个算法,该算法使用对象的边缘信息来识别搜索图像中的对象。
模板匹配是一个图像处理问题,当其姿态(X,Y,θ)未知时,使用另一张搜索图像中的模板图像找到对象的位置。在本文中,我们实现了一种算法,该算法使用对象的边缘信息来识别搜索图像中的对象。
好久没有写这个了。也就是在去年到今年这个时间段里,同时决定好几件事情。第一:考研。第二:以后方向就是大数据或者是叫数据挖掘。这两件事当然是有联系的,第一件事就是考研考到北京,接着研究生的方向就是数据挖掘了吧。在一边准备考研的同时,还必须得一边准备着数据挖掘方面的知识。无奈本科前三年这方面接触得极少,只好利用现在的时间来恶补了。 不久前买了一边《集体智慧编程》,开篇即开始讲算法,或者是整本书都是在讲算法,而第一个算法就是——相似度度量。这个在现在用得非常多,在QQ音乐等音乐播放器上有类似“猜你喜欢”,
最近的研究表明,局部描述符学习得益于L2归一化的使用,然而,文献中缺乏对这种效应的深入分析。在本文中,我们研究了L2归一化如何影响训练期间的反向传播描述符梯度。根据我们的观察,我们提出了一个新的局部描述符HyNet,它可以在匹配方面带来最先进的结果。HyNet引入了一种混合相似性度量,用于度量三态边际损失,一个正则化项约束描述符范数,以及一种新的网络体系结构,该体系结构对所有中间特征映射和输出描述符执行L2正则化。在包括补丁匹配、验证和检索在内的标准基准上,HyNet大大超过了以前的方法,并且在3D重建任务上优于完整的端到端方法。代码和模型可在https://github.com/yuruntian/HyNet上找到。
大量数据中具有"相似"特征的数据点或样本划分为一个类别。聚类分析提供了样本集在非监督模式下的类别划分。
图像文本匹配,顾名思义,就是度量一幅图像和一段文本的相似性,该技术是多个模式识别任务的核心算法。例如,在图像文本跨模态检索任务中,当给定查询文本,需要依据图像文本的相似性去检索内容相似的图像;在图像描述生成任务中,给定一幅图像,需要依据图像内容检索相似的文本,并以此作为(或者进一步生成)图像的文本描述;在图像问答任务中,需要基于给定的文本问题查找图像中包含相应答案的内容,同时查找的视觉内容反过来也需要检索相似文本预料作为预测答案。 .
在这篇文章中,我将介绍knn算法,knn算法是机器学习中十大经典算法之一。knn可用于分类和回归问题,其算法原理简单,没有涉及太多数学原理,准确的说用一个数学公式就可以表示整个算法的核心。本文主要包括以下四个问题:
随着机器学习模型广泛用于制定重要决策,可解释性成为研究领域的重要主题。目前大多数解释方法通过特征重要性得分来提供解释,即识别每个输入中重要的特征。然而,如何系统性地总结和解释每个样本的特征重要性得分是很有难度的。近日,来自斯坦福大学和谷歌大脑的研究人员为基于概念的解释提出了一些原则和要求,它们超出了每个样本的特征(per-sample feature),而是在整个数据集上识别更高层次的人类可理解概念。研究者开发了一种可以自动提取视觉概念的新型算法 ACE。该研究进行了一系列系统性实验,表明 ACE 算法可发现人类可理解的概念,这些概念与神经网络的预测结果一致且非常重要。
关键字全网搜索最新排名 【机器学习算法】:排名第一 【机器学习】:排名第二 【Python】:排名第三 【算法】:排名第四 ? 距离 ? 在做很多研究问题时常常需要估算不同样本之间的相似性度量(Similarity Measurement),这时通常采用的方法就是计算样本间的“距离”(Distance)。采用什么样的方法计算距离是很讲究,甚至关系到分类的正确与否。 本文将常用的各种度量距离罗列出来并给出了Python的代码实现,大家只需要知道有哪些距离度量方式即可,需要的时候在详细的了解。 距离度量的种类
【导读】近日,针对在真实世界网络数据中存在的超边的问题,也就是说节点关系经常超出成对关系的范围,来自清华大学与康奈尔大学的研究者发表论文提出了“深度超网络嵌入”(Deep Hyper-Network Embedding, DHNE)模型去对含有不可分超边的超网络的节点向量表示。文章证明了现有方法使用的嵌入空间中常见的线性相似性度量不能维持超网络的不可分属性,在此基础上提出的深度模型,可以在保护嵌入空间内,建立起局部与全局邻近区域的非线性元组相似性函数。在四个不同种类的超网络上做了大规模的实验,包括一个GPS
A 某和 B 某青梅竹马,A 某通过 B 某认识了 C 某,发现兴趣爱好出奇一致,这三人就搞到了一起,成为了一个形影不离的小团体。这个小团体的形成,是自下而上的迭代过程。
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/wzy0623/article/details/78933668
上一篇中介绍了四个算法,并用四个算法分别计算了两个人的相似度。这篇就来讲讲相似性算法在实际当中怎么用。第一:将指定的人与其他人作相似性比较,并从高到低进行排序;第二:对指定的人推荐未看过的电影。同样还是先给出具体分析,然后给出相应算法,再最后一起给出代码。 根据相似性从高到底排序。 def topMatchs(prefs, person, n=5, similarity=sim_pearson): scores=[(similarity(prefs, person, other),
自编码器(AE)及其变体被广泛用于无监督学习 [74],它适用于学习没有监督信息的图节点表示。 在本节中,我们将首先介绍图自编码器,然后转向图变分自编码器和其他改进。表 4 总结了所调查的 GAE 的主要特征。
聚类分析是根据对象的特性对其进行定量分类的一种多元统计方法。 比如:不同地区城镇居民收入和消费状况的分类研究;区域经济及社会发展水平的分析及全国区域经济综合评价…….
推荐系统可帮助用户找到喜欢的项目。通过为给定用户生成预测的可能性分数或最佳推荐项目列表来实现此目的。建议可以基于多种因素,包括用户人口统计,整体项目流行度和历史用户偏好。在Amazon,Spotify和Tinder等地方经常会遇到真实的例子。
在实际应用的过程中。相似性度量和计算是很经常使用的一个方法。比如网页去重、推断帖子是否相似、推荐系统衡量物品或者用户的相似度等等。当数据量大的时候,计算的时间和空间复杂度就会是一个很重要的问题,比如在推断相似发帖的时候。我们能够用kmeans来进行聚类。可是资源的消耗是巨大的。所以本文推荐一种方法,minhash+lsh(局部敏感hash),用minhash来降维。用lsh来做近似查询,本文主要介绍一下minhash。
今天为大家介绍的是来自Liwei Liu,Tingjun Hou和Yu Kang团队的一篇论文。基于深度学习的分子生成模型因其生成具有新颖结构和理想理化属性的分子的能力而受到越来越多的关注。然而,这些模型的评估,特别是在生物学背景下的评估,仍然不足。为了解决现有度量标准的局限性并模拟实际应用场景,作者构建了RediscMol基准测试,它包括从5个激酶和3个GPCR数据集中提取的活性分子。作者引入了一组重新发现和相似性相关的度量标准,以评估8个代表性的生成模型的性能。基于RediscMol基准测试的发现与之前的评估结果不同。CharRNN、VAE和Reinvent在重现已知活性分子方面表现出更强的能力,而RNNAttn、TransVAE和GraphAF尽管在常用的分布学习度量标准上表现突出,但在这方面存在困难。作者的评估框架可能为在现实世界药物设计场景中推进生成模型提供宝贵的指导。
在大多数情况下,大量的重复文本一般不会是什么好事情,比如互相抄袭的新闻,群发的垃圾短信,铺天盖地的广告文案等,这些都会造成网络内容的同质化并加重数据库的存储负担,更糟糕的是降低了文本内容的质量。因此需要一种准确而高效率的文本去重算法。而最朴素的做法就是将所有文本进行两两比较,简单易理解,最符合人类的直觉,对于少量文本来说,实现起来也很方便,但是对于海量文本来说,这明显是行不通的,因为它的时间复杂度是,针对亿级别的文本去重时,时间消耗可能就要以年为单位,此路不通。
自Deepwalk开始,图表示学习已经成为图挖掘领域最热门的方向之一. 现在火热的图神经网络可以说是图表示学习2.0
公众号遴选了各大期刊前沿论文,按照理解和提炼的方式为读者呈现每篇论文最精华的部分。QIML希望大家能够读到可以成长的量化文章,愿与你共同进步。
无监督学习是机器学习的另一大分支,与监督学习不同,无监督学习的数据集中没有数据标签,因此无法像监督学习的分类和回归问题那样学习对应标签的数据特征,无监督学习只能通过算法分析数据间的相似性来对数据进行聚类分析,今天我们就来看一下两大聚类算法:K-means聚类和分层聚类。
对于很多研究者而言,以前我们针对图像搜索任务设计损失函数并没有统一的框架,很多研究者都通过直观理解尝试新的损失函数。但在码隆科技的这篇论文中,研究者探索了图像搜索的核心问题:即如何为损失函数的设计提供一个标准框架,从而通过深度度量学习实现更优质的图像检索。
推荐系统(Recommendation System, RS),简单来说就是根据用户的日常行为,自动预测用户的喜好,为用户提供更多完善的服务。举个简单的例子,在京东商城,我们浏览一本书之后,系统会为我们推荐购买了这本书的其他用户购买的其他的书:
趋同处理可能是促进社会联系的一个因素。我们使用神经成像和网络分析来调查大一学生在观看自然的视听刺激(即视频)时社交网络地位(通过度中心性测量)和神经相似性之间的联系。参与社交网络研究的学生有119名;其中63人参与了神经成像研究。我们发现,在与高级解读和社会认知相关的脑区(例如,默认模式网络),高度中心性的个体彼此间以及与同龄人之间有相似的神经反应,而低度中心性的个体表现出更多样化的反应。被试自我报告对刺激的享受程度和感兴趣程度遵循类似的模式,但这些数据并没有改变我们的主要结果。这些发现表明,对外部刺激的神经处理过程在高度中心性的个体中是相似的,但在低度中心性的个体中是特殊的。本文发表在Nature Communications杂志。
今天发现ssim的计算里面有高斯模糊,为了快速计算,先对每个小块进行计算,然后计算所有块的平均值。可以参考源代码实现,而且代码实现有近似的在里面!matlab中中图像PSNR和SSIM的计算
领取专属 10元无门槛券
手把手带您无忧上云