首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

从pandas数据帧中删除行并动态减小数组的大小

,可以使用drop()函数来删除行,并使用del关键字来动态减小数组的大小。

具体步骤如下:

  1. 导入pandas库:import pandas as pd
  2. 创建一个数据帧:df = pd.DataFrame(data)
  3. 使用drop()函数删除指定的行:df.drop(index, inplace=True)
    • index:要删除的行的索引,可以是单个索引或索引列表。
    • inplace=True:表示在原始数据帧上进行修改,而不是创建一个新的数据帧。
  • 使用del关键字动态减小数组的大小:del df
    • del关键字用于删除变量,从而释放内存空间。

下面是一个完整的示例代码:

代码语言:txt
复制
import pandas as pd

# 创建数据帧
data = {'Name': ['John', 'Emma', 'Mike', 'Emily'],
        'Age': [25, 28, 30, 27],
        'City': ['New York', 'London', 'Paris', 'Tokyo']}
df = pd.DataFrame(data)

# 删除指定的行
df.drop(1, inplace=True)

# 动态减小数组的大小
del df

以上代码中,我们创建了一个包含姓名、年龄和城市的数据帧。然后使用drop()函数删除了索引为1的行(Emma的行)。最后使用del关键字删除了数据帧,释放了内存空间。

注意:以上代码中没有提及腾讯云相关产品和产品介绍链接地址,因为腾讯云与问题中提到的云计算品牌商无关。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

对比Excel,Python pandas删除数据框架

标签:Python与Excel,pandas 对于Excel来说,删除是一项常见任务。本文将学习一些数据框架删除技术。...准备数据框架 我们将使用前面系列中用过“用户.xlsx”来演示删除。 图1 注意上面代码index_col=0?如果我们将该参数留空,则索引将是基于0索引。...使用.drop()方法删除 如果要从数据框架删除第三(Harry Porter),pandas提供了一个方便方法.drop()来删除。...inplace:告诉pandas是否应该覆盖原始数据框架。 按名称删除 图2 我们跳过了参数axis,这意味着将其保留为默认值0或。因此,我们正在删除索引值为“Harry Porter”。...这次我们将从数据框架删除带有“Jean Grey”,并将结果赋值到新数据框架。 图6

4.6K20

动态数组公式:动态获取某列首次出现#NA值之前一数据

标签:动态数组 如下图1所示,在数据中有些为值错误#N/A数据,如果想要获取第一个出现#N/A数据上方数据(图中红色数据,即图2所示数据),如何使用公式解决?...图1 图2 如示例图2所示,可以在单元格G2输入公式: =LET(data,A2:E18,i,MIN(IFERROR(BYCOL(data,LAMBDA(x,MATCH(TRUE,ISNA(x),0...))),""))-1,DROP(TAKE(data,i),i-1)) 即可获得想要数据。...如果想要只获取第5列#N/A值上方数据,则将公式稍作修改为: =INDEX(LET(data,A2:E18,i,MIN(IFERROR(BYCOL(data,LAMBDA(x,MATCH(TRUE,ISNA...自从Microsoft推出动态数组函数后,很多求解复杂问题公式都得到简化,很多看似无法用公式解决问题也很容易用公式来实现了。

13110
  • Pandas 学习手册中文第二版:1~5

    大型数据基于智能标签切片,花式索引和子集 可以数据结构插入和删除列,以实现大小调整 使用强大数据分组工具聚合或转换数据,来对数据集执行拆分应用合并 数据高性能合并和连接 分层索引有助于在低维数据结构中表示高维数据...我们不会在本书中研究 NumPy 数组历史上看,Pandas 的确在幕后使用 NumPy 数组,因此 NumPy 数组在过去更为重要,但这种依赖在最近版本已被删除。...访问数据数据 数据和列组成,具有特定和列中选择数据结构。 这些选择使用与Series相同运算符,包括[],.loc[]和.iloc[]。...-2e/img/00223.jpeg)] 使用切片删除 切片可用于数据删除记录。...这些尚未从sp500数据删除,对这三更改将更改sp500数据。 防止这种情况正确措施是制作切片副本,这会导致复制指定数据数据

    8.3K10

    如何使用 Python 只删除 csv

    在本教程,我们将学习使用 python 只删除 csv 。我们将使用熊猫图书馆。熊猫是一个用于数据分析开源库;它是调查数据和见解最流行 Python 库之一。...在本教程,我们将说明三个示例,使用相同方法 csv 文件删除。在本教程结束时,您将熟悉该概念,并能够任何 csv 文件删除该行。 语法 这是数组删除多行语法。...我们首先读取数据框;然后我们使用该方法传递索引删除它们。...最后,我们打印了更新数据。 示例 1: csv 文件删除最后一 下面是一个示例,我们使用 drop 方法删除了最后一。...它提供高性能数据结构。我们说明了 csv 文件删除 drop 方法。根据需要,我们可以按索引、标签或条件指定要删除。此方法允许csv文件删除或多行。

    73850

    上手Pandas,带你玩转数据(1)-- 实例详解pandas数据结构

    创始人角度我们可以直接理解pandas这个python数据分析库主要特性和发展方向。...1.对表格类型数据读取和输出速度非常快。(个人对比excel和pandas,的确pandas不会死机....)在他演示,我们可以看到读取489597,6列数据只要0.9s。...数据 2 一般二维标签,大小可变表格结构,具有潜在非均匀类型列。 面板 3 一般3D标签,大小可变数组。 ---- Series 系列是具有均匀数据一维数组结构。...: 使用索引标签DataFrame删除删除。...df = df.drop(0) print(df) a b 1 3 4 1 7 8 在上面的例子,两删除,因为这两行包含相同标签0。

    6.7K30

    NumPy 和 Pandas 数据分析实用指南:1~6 全

    我们将一个对象传递给包含将添加到现有对象数据方法。 如果我们正在使用数据,则可以附加新或新列。 我们可以使用concat函数添加新列,使用dict,序列或数据进行连接。.../img/2696fb61-724d-4539-a2ff-062ff73ea35f.png)] 删除缺失信息 序列和数据dropna可用于创建对象副本,其中删除了丢失信息。...让我们使用此数据df,删除存在缺失数据所有: [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-4zysMMDZ-1681367023193)(https://gitcode.net...a7fc-409118152df4.png)] 注意,我们大大缩小了数据大小; 只有两仅包含完整信息。...我们还学习了如何通过删除或填写缺失信息来处理 pandas 数据缺失数据。 在下一章,我们将研究数据分析项目中常见任务,排序和绘图。

    5.4K30

    精通 Pandas:1~5

    默认行为是为未对齐序列结构生成索引集。 这是可取,因为信息可以保留而不是丢失。 在本书下一章,我们将处理 Pandas 缺失值。 数据 数据是一个二维标签数组。...它列类型可以是异构:即具有不同类型。 它类似于 NumPy 结构化数组添加了可变性。 它具有以下属性: 概念上讲类似于数据表或电子表格。...可以将其视为序列结构字典,在该结构,对列和均进行索引,对于,则表示为“索引”,对于列,则表示为“列”。 它大小可变:可以插入和删除列。 序列/数据每个轴都有索引,无论是否默认。...使用ndarrays/列表字典 在这里,我们列表字典创建一个数据结构。 键将成为数据结构列标签,列表数据将成为列值。 注意如何使用np.range(n)生成行标签索引。...由于并非所有列都存在于两个数据,因此对于不属于交集数据每一,来自另一个数据列均为NaN。

    19.1K10

    Pandas 秘籍:1~5

    重命名和列名称 创建和删除列 介绍 本章目的是通过彻底检查序列和数据数据结构来介绍 Pandas 基础。...对于 Pandas 用户来说,了解序列和数据每个组件,了解 Pandas 每一列数据正好具有一种数据类型,这一点至关重要。...另见 Pandas read_csv函数官方文档 访问主要数据组件 可以直接数据访问三个数据组件(索引,列和数据每一个。...同时选择数据和列 直接使用索引运算符是数据中选择一列或多列正确方法。 但是,它不允许您同时选择和列。...步骤 3 使用此掩码数据删除包含所有缺失值。 步骤 4 显示了如何使用布尔索引执行相同过程。 在数据分析过程,持续验证结果非常重要。 检查序列和数据相等性是一种非常通用验证方法。

    37.5K10

    用 Swifter 大幅提高 Pandas 性能

    Apply很好,因为它使在数据所有上使用函数变得很容易,你设置好一切,运行你代码,然后… 等待…… 事实证明,处理大型数据每一可能需要一段时间。...Swifter Swifter是一个库,它“以最快可用方式将任何函数应用到pandas数据或序列”,以了解我们首先需要讨论几个原则。...这意味着您可以很容易地通过利用它们来提高代码速度。因为apply只是将一个函数应用到数据每一,所以并行化很简单。...您可以将数据分割成多个块,将每个块提供给它处理器,然后在最后将这些块合并回单个数据。 The Magic ?...可以看到,无论数据大小如何,使用向量化总是更好。如果这是不可能,你可以vanilla panda那里得到最好速度,直到你数据足够大。一旦超过大小阈值,并行处理就最有意义。

    4.1K20

    panda python_12个很棒Pandas和NumPy函数,让分析事半功倍

    Pandas非常适合许多不同类型数据:  具有异构类型列表格数据,例如在SQL表或Excel电子表格  有序和无序(不一定是固定频率)时间序列数据。  ...具有和列标签任意矩阵数据(同类型或异类)  观察/统计数据任何其他形式。实际上,数据根本不需要标记,即可放入Pandas数据结构。  ...以下是Pandas优势:  轻松处理浮点数据和非浮点数据缺失数据(表示为NaN)  大小可变性:可以DataFrame和更高维对象插入和删除列  自动和显式数据对齐:在计算,可以将对象显式对齐到一组标签...,或者用户可以直接忽略标签,让Series,DataFrame等自动对齐数据  强大灵活分组功能,可对数据集执行拆分-应用-合并操作,以汇总和转换数据  轻松将其他Python和NumPy数据结构不规则...将数据分配给另一个数据时,在另一个数据中进行更改,其值也会进行同步更改。为了避免出现上述问题,可以使用copy()函数。

    5.1K00

    Pandas系列 - DataFrame操作

    概览 pandas.DataFrame 创建DataFrame 列表 字典 系列(Series) 列选择 列添加 列删除 pop/del 选择,添加和删除 标签选择 loc 按整数位置选择 iloc...切片 附加行 append 删除 drop 数据(DataFrame)是二维数据结构,即数据和列表格方式排列 数据(DataFrame)功能特点: 潜在列是不同类型 大小可变 标记轴...2 index 对于标签,要用于结果索引是可选缺省值np.arrange(n),如果没有传递索引值。 3 columns 对于列标签,可选默认语法是 - np.arange(n)。...创建DataFrame Pandas数据(DataFrame)可以使用各种输入创建 列表 字典 系列(Series) Numpy ndarrays 另一个数据(DataFrame) 列表 import...drop 使用索引标签DataFrame删除删除

    3.9K10

    媲美Pandas?PythonDatatable包怎么用?

    Frame 对象,datatable 基本分析单位是 Frame,这与Pandas DataFrame 或 SQL table 概念是相同:即数据和列二维数组排列展示。...() pandas_df = datatable_df.to_pandas() 下面,将 datatable 读取数据转换为 Pandas dataframe 形式,比较所需时间,如下所示: %...统计总结 在 Pandas ,总结计算数据统计信息是一个非常消耗内存过程,但这个过程在 datatable 包是很方便。...▌选择/列子集 下面的代码能够整个数据集中筛选出所有及 funded_amnt 列: datatable_df[:,'funded_amnt'] ?...▌删除/列 下面展示如何删除 member_id 这一列数据: del datatable_df[:, 'member_id'] ▌分组 (GroupBy) 与 Pandas 类似,datatable

    7.2K10

    媲美Pandas?PythonDatatable包怎么用?

    对象,datatable 基本分析单位是 Frame,这与Pandas DataFrame 或 SQL table 概念是相同:即数据和列二维数组排列展示。...() pandas_df = datatable_df.to_pandas() 下面,将 datatable 读取数据转换为 Pandas dataframe 形式,比较所需时间,如下所示: %...统计总结 在 Pandas ,总结计算数据统计信息是一个非常消耗内存过程,但这个过程在 datatable 包是很方便。...▌选择/列子集 下面的代码能够整个数据集中筛选出所有及 funded_amnt 列: datatable_df[:,'funded_amnt'] ?...▌删除/列 下面展示如何删除 member_id 这一列数据: del datatable_df[:, 'member_id'] ▌分组 (GroupBy) 与 Pandas 类似,datatable

    6.7K30

    媲美Pandas?一文入门PythonDatatable操作

    对象,datatable 基本分析单位是 Frame,这与Pandas DataFrame 或 SQL table 概念是相同:即数据和列二维数组排列展示。...() pandas_df = datatable_df.to_pandas() ‍下面,将 datatable 读取数据转换为 Pandas dataframe 形式,比较所需时间,如下所示:...统计总结 在 Pandas ,总结计算数据统计信息是一个非常消耗内存过程,但这个过程在 datatable 包是很方便。...▌选择/列子集 下面的代码能够整个数据集中筛选出所有及 funded_amnt 列: datatable_df[:,'funded_amnt'] ?...▌删除/列 下面展示如何删除 member_id 这一列数据: del datatable_df[:, 'member_id'] ▌分组 (GroupBy) 与 Pandas 类似,datatable

    7.6K50

    Python3快速入门(十三)——Pan

    如果传递索引,索引与标签对应数据值将被取出。...:返回基础数据元素数 Series.values:将对象作为ndarray返回 Series.head():返回前n Series.tail():返回后n import pandas as pd...2、DataFrame特点 数据(DataFrame)功能特点如下: (1)底层数据列是不同类型 (2)大小可变 (3)标记轴(和列) (4)可以对和列执行算术运算 3、DataFrame对象构造...major_axis - axis 1,是每个数据(DataFrame)索引()。 minor_axis - axis 2,是每个数据(DataFrame)列。...Panel.dtypes:返回对象数据类型 Panel.empty:如果NDFrame完全为空,返回True Panel.ndim:返回轴/数组维度大小 Panel.shape:返回表示DataFrame

    8.4K10

    加速数据分析,这12种高效Numpy和Pandas函数为你保驾护航

    Pandas 适用于以下各类数据: 具有异构类型列表格数据,如 SQL 表或 Excel 表; 有序和无序 (不一定是固定频率) 时间序列数据; 带有/列标签任意矩阵数据(同构类型或者是异构类型...事实上,数据根本不需要标记就可以放入 Pandas 结构。...Pandas 擅长处理类型如下所示: 容易处理浮点数据和非浮点数据 缺失数据(用 NaN 表示); 大小可调整性: 可以 DataFrame 或者更高维度对象插入或者是删除列; 显式数据可自动对齐...Isin () 有助于选择特定列具有特定(或多个)值。...当一个数据分配给另一个数据时,如果对其中一个数据进行更改,另一个数据值也将发生更改。为了防止这类问题,可以使用 copy () 函数。

    7.5K30

    12 种高效 Numpy 和 Pandas 函数为你加速分析

    我们都知道,Numpy 是 Python 环境下扩展程序库,支持大量维度数组和矩阵运算;Pandas 也是 Python 环境下数据操作和分析软件包,以及强大数据分析库。...Pandas 适用于以下各类数据: 具有异构类型列表格数据,如 SQL 表或 Excel 表; 有序和无序 (不一定是固定频率) 时间序列数据; 带有/列标签任意矩阵数据(同构类型或者是异构类型...Pandas 擅长处理类型如下所示: 容易处理浮点数据和非浮点数据 缺失数据(用 NaN 表示); 大小可调整性: 可以 DataFrame 或者更高维度对象插入或者是删除列; 显式数据可自动对齐...Isin () 有助于选择特定列具有特定(或多个)值。...当一个数据分配给另一个数据时,如果对其中一个数据进行更改,另一个数据值也将发生更改。为了防止这类问题,可以使用 copy () 函数。

    6.3K10

    加速数据分析,这12种高效Numpy和Pandas函数为你保驾护

    我们都知道,Numpy 是 Python 环境下扩展程序库,支持大量维度数组和矩阵运算;Pandas 也是 Python 环境下数据操作和分析软件包,以及强大数据分析库。...Pandas 适用于以下各类数据: 具有异构类型列表格数据,如 SQL 表或 Excel 表; 有序和无序 (不一定是固定频率) 时间序列数据; 带有/列标签任意矩阵数据(同构类型或者是异构类型...Pandas 擅长处理类型如下所示: 容易处理浮点数据和非浮点数据 缺失数据(用 NaN 表示); 大小可调整性: 可以 DataFrame 或者更高维度对象插入或者是删除列; 显式数据可自动对齐...Isin () 有助于选择特定列具有特定(或多个)值。...当一个数据分配给另一个数据时,如果对其中一个数据进行更改,另一个数据值也将发生更改。为了防止这类问题,可以使用 copy () 函数。

    6.7K20
    领券