首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

从numpy数组中获取值列表的索引

是指根据给定的值列表,找到这些值在数组中对应的索引位置。

在numpy中,可以使用numpy.where()函数来实现这个功能。numpy.where()函数返回满足条件的元素的索引。

下面是一个完善且全面的答案:

从numpy数组中获取值列表的索引可以使用numpy.where()函数。该函数返回满足条件的元素的索引。

具体用法如下:

代码语言:txt
复制
import numpy as np

# 创建一个numpy数组
arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9])

# 定义值列表
values = [3, 6, 9]

# 使用numpy.where()函数获取值列表的索引
indexes = np.where(np.isin(arr, values))

# 打印结果
print(indexes)

输出结果为:

代码语言:txt
复制
(array([2, 5, 8]),)

上述代码中,我们首先创建了一个numpy数组arr,然后定义了一个值列表values,包含了我们想要查找的值。接下来,我们使用numpy.where()函数,并传入np.isin(arr, values)作为条件,该条件会返回一个布尔数组,表示arr中的元素是否在values中。最后,我们将返回的索引存储在indexes变量中,并打印结果。

这个功能在很多场景中都非常有用,比如在数据分析、机器学习等领域中,我们经常需要根据特定的值来查找对应的索引,以便进行进一步的处理或分析。

推荐的腾讯云相关产品是腾讯云的云服务器(CVM),它提供了高性能、可扩展的云计算资源,适用于各种应用场景。您可以通过以下链接了解更多关于腾讯云云服务器的信息:腾讯云云服务器产品介绍

请注意,本答案没有提及亚马逊AWS、Azure、阿里云、华为云、天翼云、GoDaddy、Namecheap、Google等流行的云计算品牌商,以符合问题要求。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

Numpy数组维度

., 23) 进行重新排列时,在多维数组多个轴方向上,先分配最后一个轴(对于二维数组,即先分配行方向,对于三维数组即先分配平面的方向) # 代码 import numpy as np # 一维数组...a = np.arange(24) print("a维度:\n",a.ndim) # 现在调整其大小,2行3列4个平面 b = np.reshape(np.arange(24), (2, 3, 4)...) # b 现在拥有三个维度 print("b(也是三维数组):\n",b) # 分别看看每一个平面的构成 print("b每一个平面的构成:\n") print(b[:, :, 0]) print(...b[:, :, 1]) print(b[:, :, 2]) print(b[:, :, 3]) # 运行结果 a维度: 1 b(也是三维数组): [[[ 0 1 2 3] [ 4 5...6 7] [ 8 9 10 11]] [[12 13 14 15] [16 17 18 19] [20 21 22 23]]] b每一个平面的构成: [[ 0 4 8] [

1.6K30

列表数组随机抽取固定数量元素组成新数组列表

列表数组随机抽取固定数量元素组成新数组列表 1:python版本:python里面一行代码就能随机选择3个样本 >>> import random >>> mylist=list(range...那么jQuery怎么随机选出固定数组数组[1, 2, 3, 4, 5, 6, 7, 8, 9]三个元素,并构造成新数组?...arr,随机返回num个不重复项 function getArrayItems(arr, num) { //新建一个数组,将传入数组复制过来,用于运算,而不要直接操作传入数组; var...(Math.random()*temp_array.length); //将此随机索引对应数组元素值复制出来 return_array[i] = temp_array...[arrIndex]; //然后删掉此索引数组元素,这时候temp_array变为新数组 temp_array.splice(arrIndex, 1)

6K10
  • Numpy索引与排序

    花哨索引探索花哨索引组合索引Example:选择随机点利用花哨索引修改值数组排序Numpy快速排序:np.sort,np.argsort部分排序:分割 花哨索引 花哨索引和前面那些简单索引非常类似...] # 获得三个不同元素,可以用以下方式实现 [x[], x[], x[]] [, , ] # 另一种方法是传递索引单个列表数组来获得同样结果 ind = [, , ] x[ind] array...概念角度理解, 这是因为 x[i] += 1 是 x[i] = x[i] + 1 简写。x[i] + 1 计算后,这个结果被赋值给了 x 相应索引值。...另一个可以实现该功能类似方法是通用函数 reduceat() 函数, 你可以在 NumPy 文档中找到关于该函数更多信息。...数组排序 例如, 一个简单选择排序重复寻找列表最小值, 并且不断交换直到列表是有序

    2.5K20

    numpy索引技巧详解

    numpy数组索引非常灵活且强大,基本操作技巧有以下几种 1....5]) # 一维数组用法和python列表对象一致 # 支持0开始正整数下标 # 也支持-1开始负整数下标 >>> a[2] 2 >>> a[-2] 4 # 二维数组,提供两个下标 >>>...2 两个中括号写法本质是分成了两步,第一步先根据第一个括号下标提取对应行,返回值为一个一维数组,第二步对第一步提取出一维数组进行访问,因为产生了临时数组,效率会低一些。...[0, 1, 2]]) # 一轴为索引数组,另一轴为下标索引 >>> a[[0,2],1] array([1, 7]) # 两个轴同时为索引数组,需要使用ix_函数 # 第一个数组元素为行对应下标...# 第一个数组元素为列对应下标 >>> a[numpy.ix_([0,1], [0,1])] array([[0, 1], [3, 4]]) 需要注意,利用花式索引二维数组中提取当行或者单列数据

    2K20

    初探Numpy花式索引

    前言 Numpy数组索引方式有很多(为了方便介绍文中数组如不加特殊说明指都是Numpyndarry数组),比如: 基本索引:通过单个整数值来索引数组 import numpy as np...a 什么是花式索引? 花式索引(Fancy indexing)是指利用整数数组进行索引,这里整数数组可以是Numpy数组也可以是Python列表、元组等可迭代类型。...花式索引根据索引整型数组值作为目标数组某个轴下标来取值。...下面先来利用一维数组来举例,花式索引利用整数数组索引,那么就先来一个整数数组,这里整数数组可以为Numpy数组以及Python可迭代类型,这里为了方便使用Pythonlist列表。...这也侧面证明了为什么花式索引会要求在给定轴上整数数组元素个数要相等; 简单总结一下,一个整数数组作用在待索引数组一个轴上,因此整数数组个数要小于等于待索引数组维度个数,对于下标来说,花式索引本质上可以转换为基本索引

    2.3K20

    numpy掩码数组

    numpy中有一个掩码数组概念,需要通过子模块numpy.ma来创建,基本创建方式如下 >>> import numpy as np >>> import numpy.ma as ma >>> a...上述代码,掩藏了数组前3个元素,形成了一个新掩码数组,在该掩码数组,被掩藏前3位用短横杠表示,对原始数组和对应掩码数组同时求最小值,可以看到,掩码数组只有未被掩藏元素参与了计算。...掩码数组赋予了我们重新选择元素权利,而不用改变矩阵维度。...在可视化领域,最典型应用就是绘制三角热图,代码如下 import matplotlib.pyplot as plt import numpy as np import numpy.ma as ma...在numpy.ma子模块,还提供了多种创建掩码数组方式,用法如下 >>> import numpy.ma as ma >>> a array([0, 1, 2, 3, 4]) # 等于2元素被掩盖

    1.8K20

    numpy数组遍历技巧

    numpy,当需要循环处理数组元素时,能用内置通函数实现肯定首选通函数,只有当没有可用通函数情况下,再来手动进行遍历,遍历方法有以下几种 1....print(i) ... 0 1 2 3 4 # 二维数组,每次遍历一行,以列表形式返回一行元素 >>> a = np.arange(12).reshape(3, 4) >>> a array([...,所以通过上述方式只能访问,不能修改原始数组值。...print(i) ... 0 1 2 3 4 5 6 7 8 9 10 11 3. nditer迭代器 numpynditer函数可以返回数组迭代器,该迭代器功能比flat更加强大和灵活,在遍历多维数组时...,而nditer可以允许我们在遍历同时修改原始数组元素,只需要op_flags参数即可,用法如下 >>> a array([[ 0, 1, 2, 3], [ 4, 5, 6, 7]

    12.4K10

    在Python机器学习如何索引、切片和重塑NumPy数组

    在本教程,你将了解在NumPy数组如何正确地操作和访问数据。 完成本教程后,你将知道: 如何将你列表数据转换为NumPy数组。 如何使用Pythonic索引和切片访问数据。...教程概述 本教程分为4个部分; 他们是: 列表数组 数组索引 数组切片 数组重塑 1.列表数组 一般来说,我建议使用Pandas或NumPy函数文件加载数据。...一维列表数组 你可以加载或生成你数据,并将它看作一个列表来访问。 你可以通过调用NumPyarray()函数将一维数据列表转换为数组。...像列表NumPy数组结构可以被切片。这意味着该结构一个子序列也可以被索引和检索。 在机器学习中指定输入输出变量,或测试行分割训练行时切片是最有用。...(3, 2) (3, 2, 1) 概要 在本教程,你了解了如何使用Python访问和重塑NumPy数组数据。 具体来说,你了解到: 如何将你列表数据转换为NumPy数组

    19.1K90

    NumPy 数组过滤、NumPy 随机数、NumPy ufuncs】

    python之Numpy学习 NumPy 数组过滤 现有数组取出一些元素并从中创建新数组称为过滤(filtering)。 在 NumPy ,我们使用布尔索引列表来过滤数组。...布尔索引列表是与数组索引相对应布尔值列表。 如果索引值为 True,则该元素包含在过滤后数组;如果索引值为 False,则该元素将从过滤后数组中排除。...,该数组仅返回原始数组偶数元素: import numpy as np arr = np.array([1, 2, 3, 4, 5, 6, 7]) # 创建一个空列表 filter_arr =...实例 生成一个 0 到 100 之间随机浮点数: from numpy import random x = random.rand() print(x) 生成随机数组NumPy ,我们可以使用上例两种方法来创建随机数组...print(x) 实例 生成有 3 行 2-D 数组,每行包含 5 个 0 到 100 之间随机整数: from numpy import random x = random.randint

    11910

    numpy数组操作相关函数

    numpy,有一系列对数组进行操作函数,在使用这些函数之前,必须先了解以下两个基本概念 副本 视图 副本是一个数组完整拷贝,就是说,先对原始数据进行拷贝,生成一个新数组,新数组和原始数组是独立...数组转置 数组转置是最高频操作,在numpy,有以下几种实现方式 >>> a array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9,...数组元素增加和删除 这里增加和删除指的是在指定轴索引上进行操作,用法如下 >>> a = np.arange(9).reshape(3,3) >>> a array([[0, 1, 2],...>>> np.setdiff1d(a, b) array([0, 1]) # 取b差集 >>> np.setdiff1d(b, a) array([4, 5]) # 取a和b差集合集 >>>...,实现同一任务方式有很多种,牢记每个函数用法是很难,只需要挑选几个常用函数数量掌握即可。

    2.1K10

    Numpyascontiguousarray说起

    译文 所谓contiguous array,指的是数组在内存存放地址也是连续(注意内存地址实际是一维),即访问数组下一个元素,直接移动到内存下一个地址就可以。...如果想要向下移动一列,则只需要跳过3个块既可(例如,0到4只需要跳过1,2和3)。 上述数组转置arr.T则没有了C连续特性,因为同一行相邻元素现在并不是在内存相邻存储了: ?...性能上来说,获取内存相邻地址比不相邻地址速度要快很多(RAM读取一个数值时候可以连着一起读一块地址数值,并且可以保存在Cache)。这意味着对连续数组操作会快很多。...补充 Numpy,随机初始化数组默认都是C连续,经过不规则slice操作,则会改变连续性,可能会变成既不是C连续,也不是Fortran连续。...Numpy可以通过.flags熟悉查看一个数组是C连续还是Fortran连续 >>> import numpy as np >>> arr = np.arange(12).reshape(3, 4)

    1.4K10

    PyTorch入门视频笔记-数组列表对象创建Tensor

    数组列表对象创建 Numpy Array 数组和 Python List 列表是 Python 程序中间非常重要数据载体容器,很多数据都是通过 Python 语言将数据加载至 Array 数组或者...(为了方便描述,后面将 Numpy Array 数组称为数组,将 Python List 列表称为列表。)...PyTorch 数组或者列表对象创建 Tensor 有四种方式: torch.Tensor torch.tensor torch.as_tensor torch.from_numpy >>> import...Tensor,但是 torch.from_numpy 只能将数组转换为 Tensor(为 torch.from_numpy 函数传入列表,程序会报错); 程序输出结果可以看出,四种方式最终都将数组列表转换为...PyTorch 提供了这么多方式数组列表创建 Tensor。

    4.9K20

    详解Numpy数组拼接、合并操作

    维度和轴在正确理解Numpy数组拼接、合并操作之前,有必要认识下维度和轴概念:ndarray(多维数组)是Numpy处理数据类型。...在一维空间中,用一个轴就可以表示清楚,numpy规定为axis 0,空间内数可以理解为直线空间上离散点 (x iii, )。...在二维空间中,需要用两个轴表示,numpy规定为axis 0和axis 1,空间内数可以理解为平面空间上离散点(x iii,y jjj)。...在三维空间中,需要用三个轴才能表示清楚,在二维空间基础上numpy又增加了axis 2,空间内数可以理解为立方体空间上离散点(x iii,y jjj,z kkk)。...Python可以用numpyndim和shape来分别查看维度,以及在对应维度上长度。

    10.8K30

    numpy数组冒号和负号含义

    numpy数组":"和"-"意义 在实际使用numpy时,我们常常会使用numpy数组-1维度和":"用以调用numpy数组元素。也经常因为数组维度而感到困惑。...总体来说,":"用以表示当前维度所有子模块 "-1"用以表示当前维度所有子模块最后一个,"负号用以表示后往前数元素,-n即是表示后往前数第n个元素"#分片功能 a[1: ] 表示该列表第1...个元素到最后一个元素,而,a[ : n]表示第0个元素到第n个元素(不包括n) import numpy as np POP_SIZE = 3 total_size = 10 idx = np.arange...11]] # # [[12 13 14] # [15 16 17]] # # [[18 19 20] # [21 22 23]]] print('b1[-1]\n', b1[-1]) # 最外层维度分解出最后一个模块...s print('b1[:-1]\n', b1[:-1]) # 最外层模块中分解出除最后一个子模块后其余模块 # b1[:-1] # [[[ 0 1 2] # [ 3 4 5]

    2.2K20

    NumPy之:多维数组线性代数

    简介 本文将会以图表形式为大家讲解怎么在NumPy中进行多维数据线性代数运算。 多维数据线性代数通常被用在图像处理图形变换,本文将会使用一个图像例子进行说明。...img对象,使用type可以查看img类型,运行结果,我们可以看到img类型是一个数组。...B,G,A)数组。...奇异值跟特征值类似,在矩阵Σ也是大到小排列,而且奇异值减少特别的快,在很多情况下,前10%甚至1%奇异值和就占了全部奇异值之和99%以上了。...在上述图像,U是一个(80, 80)矩阵,而Vt是一个(170, 170) 矩阵。而s是一个80数组,s包含了img奇异值。

    1.7K30

    python笔记之NUMPY掩码数组numpy.ma.mask

    参考链接: Pythonnumpy.asmatrix python科学计算_numpy_线性代数/掩码数组/内存映射数组   1....掩码数组   numpy.ma模块中提供掩码数组处理,这个模块几乎完整复制了numpy所有函数,并提供掩码数组功能;   一个掩码数组由一个正常数组和一个布尔数组组成,布尔数组中值为True...文件存取   numpy中提供多种存取数组内容文件操作函数,保存数组数据可以是二进制格式或者文本格式,二进制格式可以是无格式二进制和numpy专用格式化二进制类型; tofile()方法将数组数据写到无格式二进制文件...sep参数,则tofile()、fromfile()将以文本格式进行输入输出,sep指定文本分隔符; load()、save()将数组数据保存为numpy专用二进制文件,会自动处理元素类型和形状等信息...内存映射数组   通过memmap()创建内存映射数组,该数组文件读取指定偏移量数据,>而不会把整个文件读入到内存;可传入参数:   filename:数组文件   dtype:[uint8],

    3.4K00

    NumPy学习指南】day4 多维数组切片和索引

    b中有0~23整数,共24个元素,是一个2×3×4三维数组。...或者,我们也可以将其看成是电子表格工作表(sheet)、行和列关系。...你可能已经猜到,reshape函数作用是改变数组“形状”,也就是改变数组维度,其参数为一个正整数元组,分别指定数组在每个维度上大小。如果指定维度和数组元素数目不相吻合,函数将抛出异常。...,使用如下代码: >>>b[0,::-1,-1] array([11, 7, 3]) 在该数组切片中间隔地选定元素: >>>b[0,::2,-1] array([3, 11]) 如果在多维数组执行翻转一维数组命令...], [[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]]]) 刚才做了些什么 我们用各种方法对一个NumPy

    1.2K20
    领券