首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

R语言中的岭回归、套索回归、主成分回归:线性模型选择和正则化

固定的OLS回归具有较高的方差,但没有偏差。但是,最低的测试MSE往往发生在方差和偏差之间的交点处。因此,通过适当地调整λ获取较少的方差,我们可以找到较低的潜在MSE。...降维将估计  p  +1个系数的问题简化为M  +1个系数的简单问题  ,其中  M  的两种方法是  主成分回归  和  偏最小二乘。...主成分回归(PCA) 可以将PCA描述为一种从大量变量中导出低维特征集的方法。 在回归中,我们构造  M个  主成分,然后在使用最小二乘的线性回归中将这些成分用作预测变量。...岭回归和套索 开始交叉验证方法 我们还将在正则化方法中应用交叉验证方法。 验证集 R ^ 2  C p和BIC估计测试错误率,我们可以使用交叉验证方法。...PCR和PLS 主成分回归 ## Data: X dimension: 133 19 ## Y dimension: 133 1## Fit method: svdpc## Number of

3.3K00

主成分分析(PCA)在R 及 Python中的实战指南

▼ 简而言之,主成分分析是一种从一个数据集的一大组可用变量中提取重要变量的方法。它从高维度数据集中提取出低维度特征变量集合,并尽可能多地捕捉到信息。变量越少,数据可视化也变得更有意义。...在Python & R中应用 主成分分析方法 (带有代码注解) ▼ 要选多少主成分?我可以深入研究理论,但更好是用编程实战来回答这一问题。...让我们在R中做一下: #加上带主成分的训练集 > train.data 的分数排行榜感到高兴。试试用下随机森林。 对于Python用户:为了在Python中运行主成分分析,只需从sklearn库导入主成分分析。...◇主成分分析在3维及以上维度的数据集中最有成效。因为,维度越高,就越难从最终的数据云做出解释。 ◇主成分分析应用于数值型变量的数据集上。

2.9K80
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    R中的线性回归分析

    回归分析(regression analysis) 回归分析是研究自变量与因变量之间关系形式的分析方法,它主要是通过建立因变量Y与影响它的自变量Xi(i=1,2,3...)之间的回归模型,来预测因变量Y...的发展趋势。...简单线性回归模型 Y=a+b*X+e Y——因变量 X——自变量 a——常数项,是回归直线在纵轴上的截距 b——回归系数,是回归直线的斜率 e——随机误差,即随机因素对因变量所产生的影响...回归分析函数 lm(formula) formula:回归表达式y~x+1 lm类型的回归结果,一般使用summary函数进行查看 预测函数 predic(lmModel,predictData...,level=置信度) 参数说明: lmModel:回归分析得到的模型 predictData:需要预测的值 level:置信度 返回值:预测结果 data <- read.table('data.csv

    1.6K100

    偏最小二乘回归(PLSR)和主成分回归(PCR)分析光谱数据|附代码数据

    p=2655此示例显示如何在matlab中应用偏最小二乘回归(PLSR)和主成分回归(PCR),并讨论这两种方法的有效性(点击文末“阅读原文”获取完整代码数据)。...相关视频拓端,赞9主成分分析PCA降维方法和R语言分析葡萄酒可视化实例,时长04:30加载数据加载包括401个波长的60个汽油样品的光谱强度及其辛烷值的数据集。...接下来,拟合具有两个主要成分的PCR模型。第一步是X使用该pca函数执行主成分分析,并保留两个主成分。然后,PCR只是这两个成分的因变量的线性回归。...R语言实现偏最小二乘回归法 partial least squares (PLS)回归Matlab中的偏最小二乘法(PLS)回归模型,离群点检测和变量选择偏最小二乘回归(PLSR)和主成分回归(PCR)...R语言实现偏最小二乘回归法 partial least squares (PLS)回归Matlab中的偏最小二乘法(PLS)回归模型,离群点检测和变量选择偏最小二乘回归(PLSR)和主成分回归(PCR)

    1.3K30

    MATLAB偏最小二乘回归(PLSR)和主成分回归(PCR)分析光谱数据|附代码数据

    此示例显示如何在matlab中应用偏最小二乘回归(PLSR)和主成分回归(PCR),并讨论这两种方法的有效性当存在大量预测变量时,PLSR和PCR都是对因变量建模的方法,并且这些预测变量高度相关或甚至共线性...接下来,拟合具有两个主要成分的PCR模型。第一步是X使用该pca函数执行主成分分析,并保留两个主成分。然后,PCR只是这两个成分的因变量的线性回归。...本文选自《偏最小二乘回归(PLSR)和主成分回归(PCR)分析光谱数据》。...R语言实现偏最小二乘回归法 partial least squares (PLS)回归Matlab中的偏最小二乘法(PLS)回归模型,离群点检测和变量选择偏最小二乘回归(PLSR)和主成分回归(PCR)...R语言实现偏最小二乘回归法 partial least squares (PLS)回归Matlab中的偏最小二乘法(PLS)回归模型,离群点检测和变量选择偏最小二乘回归(PLSR)和主成分回归(PCR)

    1.2K00

    主成分分析和因子分析在SPSS中的实现

    Spss 中选取主成分的方法有两个:一是根据特征根≥ 1 来选取; 另一种是用户直接规定主成分的个数来选取。   特征值的贡献还可以从 SPSS 的所谓碎石图看出。   ...三、主成分分析和因子分析(2) 主成分分析和因子分析的区别   1,因子分析中是把变量表示成各因子的线性组合,而主成分分析中则是把主成分表示成各个变量的线性组合。   ...4,主成分分析中,当给定的协方差矩阵或者相关矩阵的特征值是唯一的时候,的主成分 一般是独特的;而因子分析中因子不是独特的,可以旋转得到不到的因子。   ...在主成分分析中,成分的数量是一定的,一般有几个变量就有几个主成分。   和主成分分析相比,由于因子分析可以使用旋转技术帮助解释因子,在解释方面更加有优势。...(reduce dimensionality)d,在多元回归中,主成分分析可以帮助判断是否存在共线性(条件指数),还可以用来处理共线性。

    4.1K51

    MATLAB偏最小二乘回归(PLSR)和主成分回归(PCR)分析光谱数据|附代码数据

    此示例显示如何在matlab中应用偏最小二乘回归(PLSR)和主成分回归(PCR),并讨论这两种方法的有效性 ( 点击文末“阅读原文”获取完整代码数据******** ) 。...接下来,拟合具有两个主要成分的PCR模型。第一步是X使用该pca函数执行主成分分析,并保留两个主成分。然后,PCR只是这两个成分的因变量的线性回归。...然而,使用相同数量的成分,PLSR做得更好。实际上,观察上图中拟合值的水平分布,使用两个分量的PCR几乎不比使用常数模型好。回归的r方值证实了这一点。...请注意,尽管两个PLS成分是观察到的更好的预测因子,但下图显示它们解释的方差比例比PCR中使用的前两个主成分少。...有问题欢迎下方留 本文选自《偏最小二乘回归(PLSR)和主成分回归(PCR)分析光谱数据》。

    43700

    R语言提取PDF文件中的文本内容

    有时候我们想提取PDF中的文本不得不借助一些转化软件,本次教程给大家介绍一下如何简单从pdf文件中提取文本的R包。 安装R包: install.packages("pdftools")。...当然如果在Windows以外的环境安装需要部署 poppler 环境。...读取文本的命令: txt=pdf_txt(“文件路径”)。 获取每页的内容,命令:txt[n] 获取第n页的内容。 获取pdf文件目录: doc=pdf_toc(“文件路径”)。...当然doc变量中的目录还不是标准化的格式,那么我们需要一个通用json格式,需要安装R包jsoblite。...也就拿到了文档的整个目录。 综上步骤,我们便可以随便获取任意章节的任意内容。那么接下来就是对这些文字的应用,各位集思广益吧。

    9.7K10

    MATLAB偏最小二乘回归(PLSR)和主成分回归(PCR)分析光谱数据|附代码数据

    最近我们被客户要求撰写关于偏最小二乘回归(PLSR)和主成分回归(PCR)的研究报告,包括一些图形和统计输出。...此示例显示如何在matlab中应用偏最小二乘回归(PLSR)和主成分回归(PCR),并讨论这两种方法的有效性 当存在大量预测变量时,PLSR和PCR都是对因变量建模的方法,并且这些预测变量高度相关或甚至共线性...接下来,拟合具有两个主要成分的PCR模型。第一步是X使用该pca函数执行主成分分析,并保留两个主成分。然后,PCR只是这两个成分的因变量的线性回归。...然而,使用相同数量的成分,PLSR做得更好。实际上,观察上图中拟合值的水平分布,使用两个分量的PCR几乎不比使用常数模型好。回归的r方值证实了这一点。...请注意,尽管两个PLS成分是观察到的更好的预测因子,但下图显示它们解释的方差比例比PCR中使用的前两个主成分少。

    41000

    主成分分析PCA在脑科学研究中的应用

    我们这里所说的主成分分析PCA正是基于这样的实际需求而发展出来的一种降维算法。 本文中,笔者重点对PCA在脑科学研究中的应用进行论述,使读者先对PCA的应用场景有一个全面了解。...更重要的是,当你再次从硬盘中调取压缩后的数据后,可以把PCA降维后的数据通过矩阵变换恢复原始数据。...4)提取ERP中特定的ERP成分 在脑电ERP研究中,某些ERP成分往往是相互叠加的,这样就会使得成分的幅值和潜伏期的测量不太精准。...此时,可以利用PCA算法把相互叠加的成分提取出来,得到相对“干净”的ERP成分。...目前,有专门用于ERP成分提取的PCA工具包(ERP PCA Toolkit,https://sourceforge.net/projects/erppcatoolkit/files/erppcatoolkit

    86300

    偏最小二乘回归(PLSR)和主成分回归(PCR)

    p=2655 此示例显示如何在matlab中应用偏最小二乘回归(PLSR)和主成分回归(PCR),并讨论这两种方法的有效性。...在实践中,在选择组件数量时可能需要更加谨慎。例如,交叉验证是一种广泛使用的方法,稍后将在本示例中进行说明。目前,上图显示具有两个成分的PLSR解释了观察到的大部分方差y。计算双组分模型的拟合响应值。...接下来,拟合具有两个主要组分的PCR模型。第一步是X使用该pca函数执行主成分分析,并保留两个主成分。然后,PCR只是这两个组分的响应变量的线性回归。...然而,使用相同数量的组件,PLSR在安装方面做得更好y。实际上,观察上图中拟合值的水平散射,使用两个分量的PCR几乎不比使用常数模型好。两次回归的r平方值证实了这一点。...PCR曲线一致性较高的事实表明,为什么使用两种成分的PCR相对于PLSR在拟合时表现如此糟糕y。PCR构建组件以便最好地解释X,因此,前两个组件忽略了数据中适合观察到的重要信息y。

    2.3K10

    如何选择单细胞分析流程中的主成分数量:策略学习

    在单细胞流程中,需要选定合适的主成分数量然后再进行后续的分析,过多和过少的主成分都可能会为后续的分析带来不同程度的影响。过多的主成分可能会导致模型过拟合。...PCA通过将原始数据投影到新的轴(主成分)上,目的是提取数据中的主要变异。如果保留过多的主成分,模型可能会捕捉到数据中的噪声而非有意义的生物学信号,导致分析结果不具有泛化能力。...过少的主成分可能会丢失重要的生物学信息。PCA通过减少数据的维度来简化数据集,但如果去除的主成分包含了对细胞群体分类有重要意义的信息,可能导致后续分析中细胞类型或亚群体的识别不准确。...但ElbowPlot并不会直接了当的告诉大家具体的数值,不过也可以从曲线由陡峭变平缓的感觉来判断大概在8-15之间可能存在最佳主成分数量值。...因此,仅仅说“选择5个”或“选择10个”主成分是没有意义的,因为考虑到可能仅前3个主成分就能解释80%的变异,甚至前20个主成分就能解释大部分变异。

    13310

    基于总变差模型的纹理图像中图像主结构的提取方法。

    一个很有意思的现象:在不去除纹理的前提下,人类的视觉感知系统完全有能力理解这些图像。从心里学角度分析,图像的整体结构特才是人类视觉感知的主要数据,而不是那些个体细节(纹理)。...因此从图像中提取那些有意义的结构数据是一项具有意义的工作,同时对于计算机来说也是非常有挑战性的。        ...(b)则反映了纹理和结构像素点都会产生比较大的D(D值大反应在图像中也就是对应像素点的亮度高);(c)可以看出结构部分中的L(L值大反应在图像中也就是对应像素点的亮度高)值大于纹理部分的L值,造成这种现象的一种直觉上的解释为...相对于传统的方法,该矢量化算法可以产生更好地效果:不丢失边缘和细节信息。 本文的算法还可以用于边缘提取。...图9展示了一个例子,该幅图像中包含很明显的前景和背景的纹理,这往往导致边缘提取的失败。图9(b)和(c)使用不同参数的额Canny边缘检测提取的边缘。很明显这样的边缘是不令人满意的。

    1.9K60

    从ceph对象中提取RBD中的指定文件

    前言 之前有个想法,是不是有办法找到rbd中的文件与对象的关系,想了很久但是一直觉得文件系统比较复杂,在fs 层的东西对ceph来说是透明的,并且对象大小是4M,而文件很小,可能在fs层进行了合并,应该很难找到对应关系...,最近看到小胖有提出这个问题,那么就再次尝试了,现在就是把这个实现方法记录下来 这个提取的作用个人觉得最大的好处就是一个rbd设备,在文件系统层被破坏以后,还能够从rbd提取出文件,我们知道很多情况下设备的文件系统一旦破坏...,无法挂载,数据也就无法读取,而如果能从rbd中提取出文件,这就是保证了即使文件系统损坏的情况下,数据至少不丢失 本篇是基于xfs文件系统情况下的提取,其他文件系统有时间再看看,因为目前使用的比较多的就是...,大小为10G分成两个5G的分区,现在我们在两个分区里面分别写入两个测试文件,然后经过计算后,从后台的对象中把文件读出 mount /dev/rbd0p1 /mnt1 mount /dev/rbd0p2...设备进行dd读取也可以把这个文件读取出来,这个顺带讲下,本文主要是从对象提取: dd if=/dev/rbd0 of=a bs=512 count=8 skip=10177 bs取512是因为sector

    4.9K20

    如何从内存提取LastPass中的账号密码

    简介 首先必须要说,这并不是LastPass的exp或者漏洞,这仅仅是通过取证方法提取仍旧保留在内存中数据的方法。...之前我阅读《内存取证的艺术》(The Art of Memory Forensics)时,其中有一章节就有讨论从浏览器提取密码的方法。...方法 一开始还是挺简单的,从寻找限制开始就变得很复杂了。...如果主密码本身就在内存中,为何到现在都还没有发现呢?我假设它只是被清除了,在此之前密码就已经被解密了。...这些信息依旧在内存中,当然如果你知道其中的值,相对来说要比无头苍蝇乱撞要科学一点点。此时此刻,我有足够的数据可以开始通过使用Volatility插件从内存映像中自动化提取这些凭证。

    5.7K80

    (数据科学学习手札22)主成分分析法在Python与R中的基本功能实现

    上一篇中我们详细介绍推导了主成分分析法的原理,并基于Python通过自编函数实现了挑选主成分的过程,而在Python与R中都有比较成熟的主成分分析函数,本篇我们就对这些方法进行介绍: R 在R的基础函数中就有主成分分析法的实现函数...我们使用了R中自带的数据集USJudgeRating来进行演示,这是一个包含43个样本,12个连续型实自变量的数据集,适合来演示PCA,这里我们在其自带方法的基础上,使用自编函数来对训练后的数据进行一步到位的...,可以说它们几乎正交,说明主成分的结果非常有效: Python 我们使用sklearn.decomposition中的PCA来实现主成分降维,其主要参数如下: n_components:这个参数可以帮我们指定希望...''' print(X.shape) '''初始化PCA模型,这里选择希望从13个原始变量中产出三个主成分''' pca = PCA(n_components=3) '''将X导入设定好的模型中''...可以看出,经过主成分分析,我们得到了比较好的降维数据,这又一次说明了主成分分析的重要性; 以上就是关于Python和R中主成分分析基础降维功能的介绍,如有不正确之处望指出。

    1.7K100

    如何从 Debian 系统中的 DEB 包中提取文件?

    本文将详细介绍如何从 Debian 系统中的 DEB 包中提取文件,并提供相应的示例。图片使用 dpkg 命令提取文件在 Debian 系统中,可以使用 dpkg 命令来管理软件包。...该命令提供了 -x 选项,可以用于从 DEB 包中提取文件。...以下是几个示例:示例 1: 提取整个 DEB 包的内容dpkg -x package.deb /path/to/extract这条命令将提取 package.deb 中的所有文件,并将其存放在 /path...示例 2: 提取 DEB 包中的特定文件dpkg -x package.deb /path/to/extract/file.txt这条命令将提取 package.deb 中名为 file.txt 的文件...提取文件后,您可以对其进行任何所需的操作,如查看、编辑、移动或复制。结论使用 dpkg 命令可以方便地从 Debian 系统中的 DEB 包中提取文件。

    3.5K20

    R语言第六章机器学习①R中的逐步回归要点

    逐步回归有三种策略: 前向选择从模型中没有预测变量开始,迭代地添加最多的贡献预测变量,并在改进不再具有统计显着性时停止。...向后选择(或向​​后消除),从模型中的所有预测变量(完整模型)开始,迭代地移除最少的贡献预测变量,并在您拥有所有预测变量具有统计显着性的模型时停止。 逐步选择(或顺序替换),这是前向和后向选择的组合。...计算逐步回归 有许多函数和R包用于计算逐步回归。 这些包括:stepAIC()[MASS包],由AIC选择最佳型号。...在我们的例子中,可以看出具有4个变量(nvmax = 4)的模型是具有最低RM的模型 summary(step.model$finalModel) coef(step.model$finalModel,...其他替代方案是惩罚回归(ridge和lasso回归)和基于主成分的回归方法(PCR和PLS)。

    3.6K20

    FastReport VCLFMX使用教程:DelphiLazarus中的两级数据(主-从)报表

    在这篇文章中,想告诉你 FastReport 如此强大的多级报告。他们的结构可以比作一棵树——树干、大树枝、从它们长出的细树枝,等等直到叶子——或者与公司结构进行比较:部门、分部、员工。...一张表包含主要实体的列表;与第一个表绑定的另一个表包含一个从属实体列表,其中包含对第一个表的引用,指定第二个表中的某个实体从属于第一个表中的哪个实体,依此类推。...窗口中连接我们的数据源。 将第一级数据(主)和第二级数据(详细信息)带添加到页面。从数据面板(在右侧),我们将表字段拉到各自的波段(主和细节)。...启动后,我们将看到每个客户的订单列表都是相同的,并且包含订单表中的所有记录。这是因为我们没有打开 Orders 表中的记录过滤。 让我们回到我们的数据源。...现在我们必须在下级源中设置记录过滤条件。为此,请调用 Table 2 组件中 MasterFields 属性的编辑器: 我们必须连接两个源中的两个 CustNo 字段。

    2.3K10

    R语言、SPSS基于主成分PCA的中国城镇居民消费结构研究可视化分析

    因子提取方法主要有7种,在Method栏中可以看到,系统默认的提取方法是主成分(),因此对此栏不作变动,就是认可了主成分分析方法。 ...相关系数矩阵对主成分分析具有参考价值,毕竟主成分分析是从计算相关系数矩阵的特征根开始的。...根据λ值决定主成分数目的准则有三:i 只取λ>1的特征根对应的主成分 从Total Variance Explained表中可见,第一、第二和第三个主成分对应的λ值都大于1,这意味着这三个主成分得分的方差都大于...res.pca 的见解1.matlab偏最小二乘回归(PLSR)和主成分回归(PCR)2.R语言高维数据的主成分pca...lasso回归,ridge岭回归和elastic-net模型7.r语言中的偏最小二乘回归pls-da数据分析8.R语言用主成分PCA、 逻辑回归、决策树、随机森林分析心脏病数据并高维可视化9.R语言主成分分析

    73000
    领券