首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

从DatagridViewCell修剪空间

是一个关于在Windows Forms应用程序中使用DataGridView控件时优化空间利用的技巧。通过修剪单元格中的空白空间,可以使数据在表格中更紧凑地显示,提高用户界面的效率和易用性。

修剪空间的方法可以通过以下步骤实现:

  1. 设置DataGridView控件的AutoSizeMode属性为AllCells或AllCellsExceptHeader。这将自动调整列宽以适应单元格中的内容,并删除单元格周围的空白空间。
  2. 使用DataGridView的DefaultCellStyle属性来设置单元格的样式。可以通过设置Padding属性来减少单元格内边距,进一步减少空间占用。
  3. 如果单元格中的文本内容过长,可以使用单元格的ToolTipText属性来显示完整的文本内容。这样可以避免单元格的宽度过大,从而节省空间。
  4. 如果需要对单元格进行编辑,可以使用DataGridView的EditingControlShowing事件来自定义编辑控件的大小。通过减少编辑控件的边距和内边距,可以提高空间利用效率。
  5. 避免使用不必要的空白行或列,可以通过设置DataGridView的AllowUserToAddRows属性和AllowUserToDeleteRows属性来控制用户是否能够添加或删除行。

总结一下,从DatagridViewCell修剪空间是通过设置DataGridView控件的属性和样式,以及自定义单元格编辑控件的大小来优化空间利用。这种优化可以提高用户界面的效率和易用性。

腾讯云的相关产品中,与DataGridView类似的控件是TableGrid,可用于展示和编辑表格数据。详情请参考腾讯云TableGrid产品介绍页面:TableGrid产品介绍

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

C#实现WinForm DataGridView控件支持叠加数据绑定

我们都知道WinForm DataGridView控件支持数据绑定,使用方法很简单,只需将DataSource属性指定到相应的数据源即可,但需注意数据源必须支持IListSource类型,这里说的是支持,而不是实现,是因为他既可以是实现了IListSource的类型,也可以是实现了IList的类型,例如:List类型,DataTable类型等,这里就不一一列举了,今天我主要实现的功能如标题所描述的:实现WinForm DataGridView控件支持叠加数据绑定,或者说是附加数据功能,什么意思呢?说白了就是支持数据的多次绑定,标准的绑定方法只支持单一绑定,即每次绑定均会清除原来的数据,而叠加数据绑定则可实现每次绑定均以附加的形式(原数据保留)添加到DataGridView控件中,这样就实现了分页加载,但可完整显示已加载的所有数据,这种应用场景在C/S端很常见,B/S端上也有(例如QQ空间动态下面的加载更多按钮)

03
  • EagleEye: Fast Sub-net Evaluation for Efficient Neural Network Pruning(论文阅读)[通俗易懂]

    找出训练好的深度神经网络(DNN)的计算冗余部分是剪枝算法要解决的关键问题。许多算法都试图通过引入各种评估方法来预测修剪后的子网的模型性能 。在这个工作中,我们提出了一种称为EagleEye的剪枝方法,其中使用了一个基于自适应批归一化adaptive batch normalization 的简单而有效的评估组件,以揭示不同的修剪DNN结构与其最终确定精度之间的强相关性。这种强相关性使我们能够以最高的潜在准确率快速发现修剪后的候选对象,而无需实际对它们进行微调。该模块对一些已有的剪枝算法也具有通用性,便于插件化和改进。在我们的实验中,EagleEye获得了比所有研究的剪枝算法都要好的剪枝性能。具体而言,要修剪MobileNet V1和ResNet-50,EagleEye的性能要比所有比较方法高出 3.8 % 3.8% 3.8%。即使在更具挑战性的修剪MobileNet V1紧凑模型的实验中,EagleEye修剪了50%的操作(FLOP),可达到70.9%的精度。所有精度结果均为Top-1 ImageNet分类精度。

    01

    APQ:联合搜索网络架构、剪枝和量化策略

    本文提出APQ,以便在资源受限的硬件上进行有效的深度学习推理。与以前分别搜索神经体系结构,修剪策略和量化策略的方法不同,本文以联合方式优化它们。为了应对它带来的更大的设计空间问题,一种有前途的方法是训练量化感知的准确性预测器,以快速获得量化模型的准确性,并将其提供给搜索引擎以选择最佳拟合。但是,训练此量化感知精度预测器需要收集大量量化的<model,precision>对,这涉及量化感知的微调,因此非常耗时。为了解决这一挑战,本文建议将知识从全精度(即fp32)精度预测器转移到量化感知(即int8)精度预测器,这将大大提高采样效率。此外,为fp32精度预测器收集数据集只需要通过从预训练的 once-for-all 网络中采样就可以评估神经网络,而无需任何训练成本。ImageNet 上的大量实验证明了联合优化方法的好处。与MobileNetV2 + HAQ 相比,APQ 以相同的精度将延迟降低2倍,能耗降低1.3倍。与单独的优化方法(ProxylessNAS + AMC + HAQ )相比,APQ可提高ImageNet精度2.3%,同时减少GPU数量级和CO2排放量,从而推动了绿色AI在环保方面的前沿。

    03

    【两项业界最佳】普林斯顿新算法自动生成高性能神经网络,同时超高效压缩

    【新智元导读】普林斯顿大学研究人员提出了一种会在训练过程中连接、生长、移除神经元的神经网络。这种神经网络使用梯度和神经元强弱来生长(grow)和修剪(prune),从而实现权重和结构的同时训练。此算法可同时实现神经网络结构的自动选择和超高效压缩。所取得的压缩率,所获得的神经网络模型均为当前业内最好纪录。 神经网络的结构对其性能有极其重要的影响。目前主流的神经网络结构搜索法仍然是试凑法,该方法存在三大问题: 训练过程中神经网络结构是固定的,训练并不能改善结构 时间和计算消耗巨大 生成的网络通常很冗余,计算和存

    07

    ICCV 2023 | AdaNIC:通过动态变换路由实现实用的神经图像压缩

    自动编码器的特定变体,即压缩自动编码器(CAE),已成为神经图像压缩中流行的架构选择。采用CAE学习图像信号的紧凑非线性表示取得了巨大成功,与现有的编解码器相比,产生了相当甚至更优的率失真性能。之前的研究工作已经证明,CAE的规模与图像质量或比特率高度相关。在这种情况下,经过充分研究的信道修剪方法可能适合复杂性缓解的需要。当使用信道修剪方法去除部分信道时,过度的信道修剪可能导致率失真性能严重下降。因此,静态的信道修剪方式可能不适合进一步的率失真复杂度优化。具体结果可见图1,对于三张不同的输入图像,直接将潜在变量的通道数由192裁剪为176。深色圆点代表了原始的率失真表现,浅色圆点代表裁剪后的率失真表现。可以看到,三张图像表现出了不同的下降趋势,但复杂度的降低是一致的。更进一步的,箭头代表不同图像块的率失真表现,可以发现,同一图像的不同图像块也会有不同的率失真下降趋势。因此,这种通道裁剪方法需要更细粒度的划分,而不仅仅是作用在整张图像上。此外,作者希望研究一种动态路由解决方案,以探索率失真和复杂度的联合优化。因为,在运行时使用内容自适应优化能实现最大的系统吞吐量。由于动态路由的作用空间被设计为样本或区域自适应,因此它可以无缝集成到其他可行的解决方案中,以加速神经非线性变换,从而产生静态轻量级模型,并通过联合优化提高其性能。这种动态路由方法在运行时做出编码决策,这类似于现代图像/视频编码标准通常采用的传统RDO过程或快速算法。这种运行时权衡可以带来更大的灵活性,从而通过定制行为实现更好的速率失真或复杂性权衡。

    01

    学界 | 为数据集自动生成神经网络:普林斯顿大学提出NeST

    选自arXiv 机器之心编译 参与:李亚洲、李泽南 普林斯顿大学最近提出的 NeST 方法从新的角度为神经网络优化打开了方向。研究人员提出的新技术可以用「种子」神经网络为基础,对特定数据集自动生成最优化的神经网络,这些生成的模型在性能上超过此前业内最佳水平,同时资源消耗与模型尺寸相比同类模型小了一个数量级。研究人员称,NeST 方法在工作过程中与人类大脑的成长和处理任务方式非常相近。 过去十几年,神经网络变革了大量的研究领域,例如计算机视觉、语音识别、机器人控制等。神经网络通过多层抽象从数据集中提取智能的能

    05

    当前深度神经网络模型压缩和加速方法速览

    导读: 本文全面概述了深度神经网络的压缩方法,主要可分为参数修剪与共享、低秩分解、迁移/压缩卷积滤波器和知识精炼,本论文对每一类方法的性能、相关应用、优势和缺陷等进行独到的分析。机器之心简要介绍了该论文,更详细的内容请查看原论文。 大型神经网络具有大量的层级与结点,因此考虑如何减少它们所需要的内存与计算量就显得极为重要,特别是对于在线学习和增量学习等实时应用。此外,近来智能可穿戴设备的流行也为研究员提供了在资源(内存、CPU、能耗和带宽等)有限的便携式设备上部署深度学习应用提供了机会。高效的深度学习方法可以

    06

    CAD常用基本操作

    CAD常用基本操作 1 常用工具栏的打开和关闭:工具栏上方点击右键进行选择 2 动态坐标的打开与关闭:在左下角坐标显示栏进行点击 3 对象捕捉内容的选择:A在对象捕捉按钮上右键点击(对象捕捉开关:F3) B 在极轴选择上可以更改极轴角度和极轴模式(绝对还是相对上一段线) 4 工具栏位置的变化:A锁定:右下角小锁;工具栏右键 B 锁定情况下的移动:Ctrl +鼠标移动 5 清楚屏幕(工具栏消失):Ctrl + 0 6 隐藏命令行:Ctrl + 9 7 模型空间和布局空间的定义:模型空间:无限大三维空间 布局空间:图纸空间,尺寸可定义的二位空间 8 鼠标左键的选择操作:A 从左上向右下:窗围 B 从右下向左上:窗交 9 鼠标中键的使用:A双击,范围缩放,在绘图区域最大化显示图形 B 按住中键不放可以移动图形 10 鼠标右键的使用:A常用命令的调用 B 绘图中Ctrl + 右键调出捕捉快捷菜单和其它快速命令 11 命令的查看:A 常规查看:鼠标移于工具栏相应按钮上查看状态栏显示 B 命令别名(缩写)的查看:工具→自定义→编辑程序参数(acad.pgp) 12 绘图中确定命令的调用:A 鼠标右键 B ESC键(强制退出命令) C Enter键 D 空格键(输入名称时,空格不为确定) 13 重复调用上一个命令: A Enter键 B 空格键 C 方向键选择 14 图形输出命令:A wmfout(矢量图) B jpgout/bmpout(位图)应先选择输出范围 15 夹点的使用:A蓝色:冷夹点 B 绿色:预备编辑夹点 C红色:可编辑夹点 D 可通过右键选择夹点的编辑类型 E 选中一个夹点之后可以通过空格键依次改变夹点编辑的命令如延伸,移动或比例缩放(应注意夹点中的比例缩放是多重缩放,同一图形可在选中夹点连续进行多次不同比例缩放) 16 三维绘图中的旋转:按住Shift并按住鼠标中键拖动 17 . dxf文件:表示在储存之后可以在其它三维软件中打开的文件 18 . dwt文件:图形样板文件,用于自定义样板 19 . dws文件:图形标准文件,用于保存一定的绘图标准 20 对文件进行绘图标准检查并进行修复:打开CAD标准工具栏(工具栏右键)→配置(用于添加自定义的绘图标准;检查(用于根据添加的标准修复新图纸的标准))有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺) 21 绘图中的平行四边形法则(利用绘制四边形绘制某些图形) A两条直线卡一条直线,绘制一个边直线后,通过平移获取另一边直线 B 在圆中绘制相应长度的弦,现在圆心处绘制相同长度的直线,再通过平移获得 22 自定义工具栏命令 CUI或输入Toolbar 其中命令特性宏中的^C^表示取消正在执行的操作 22 循环选择操作方法:Shift+空格 用于图形具有共同边界的情况下的选择 23 系统变量 Taskbar的作用:0表示在工具栏上只显示一个CAD窗口,1表示平铺显示所有CAD窗口

    05
    领券