首页
学习
活动
专区
圈层
工具
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

从DataFrame中上一组中具有值的上一行中减去一行

,可以通过使用pandas库中的shift()函数和sub()函数来实现。

首先,使用shift()函数将DataFrame中具有值的上一行移动到当前行。然后,使用sub()函数将移动后的上一行与当前行进行减法运算。

以下是一个示例代码:

代码语言:txt
复制
import pandas as pd

# 创建一个示例DataFrame
df = pd.DataFrame({'A': [1, 2, None, 4, 5], 'B': [2, None, 3, 4, None]})

# 使用shift()函数将具有值的上一行移动到当前行
previous_row = df.shift()

# 使用sub()函数将移动后的上一行与当前行进行减法运算
result = df.sub(previous_row)

print(result)

输出结果将是:

代码语言:txt
复制
     A    B
0  NaN  NaN
1  1.0  NaN
2  NaN  NaN
3  NaN  1.0
4  1.0  NaN

在这个示例中,我们创建了一个包含两列(A和B)的DataFrame,并在第一行中留有空值。然后,我们使用shift()函数将具有值的上一行移动到当前行,并使用sub()函数将移动后的上一行与当前行进行减法运算。最终的结果是一个新的DataFrame,其中包含了上一组具有值的上一行与当前行的差值。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

Pandas基础:如何计算两行数值之差

标签:Python,pandas 有时候,我们想要计算数据框架中行之间的差,可以使用dataframe.diff()方法,而不遍历行。...图1 pandas diff()语法 DataFrame.diff(periods= 1, axis = 0) 在pandas数据框架中计算行之间的差异 可以无须遍历行而计算出股票的日差价...参数periods控制要移动的小数点,以计算行之间的差异,默认值为1。 下面的示例计算股票价格的日差价。第一行是NaN,因为之前没有要计算的值。...从第二行开始,它基本上从原始数据框架的第二行获取值,然后减去原始数据框架第一行的值。例如405-400=5,400-200=200。...图5 计算两列之间的差 还可以通过将axis参数设置为1(或“columns”)来计算数据框架中各列之间的差异。pandas中的axis参数通常具有默认值0(即行)。

4.8K31

Pandas | 数据结构

前言 上一期介绍了将文件加载到Pandas对象,这个对象就是Pandas的数据结构。本次我们就来系统介绍一下Pandas的数据结构。 本文框架 1. 数据结构简介 2....DataFrame 4.1 根据多个字典序列创建dataframe 5. 从DataFrame中查询出Series 5.1 查询一列 5.2 查询多列 5.3 查询一行 5.4 查询多行 1....Series Series是一种类似于一维数组的对象,它由一组数据(不同数据类型)以及一组与之相关的数据标签(即索引)组成。...DataFrame DataFrame是一个表格型的数据结构; 每列可以是不同的值类型(数值、字符串、布尔值等) 既有行索引index,也有列索引columns,可以被看做由Series组成的字典。...从DataFrame中查询出Series 如果只查询一行、一列,返回的是pd.Series; 如果查询多行、多列,返回的是pd.DataFrame。

1.6K30
  • 【数据处理包Pandas】DataFrame数据选择的基本方法

    副本df2与原始的 DataFrame df具有相同的数据和结构,但它们是独立的对象,对其中一个对象的操作不会影响另一个对象。因此,通过这样的方式可以安全地对df2进行任何需要的修改或处理。...对 DataFrame df2中的每一行,从 ‘Q1’ 到 ‘Q4’ 列的值进行求和: df2.apply(lambda x:sum(x['Q1':'Q4']),axis=1) # 一次处理一行 使用了...apply()函数,对 DataFrame 中的每一行进行操作。...因此,该代码将会对 DataFrame df2中的每一行,从 ‘Q1’ 到 ‘Q4’ 列的值进行求和,并返回一个包含每一行求和结果的 Series。...()函数计算每个分组中的最大值: df.groupby('team').apply(lambda x :np.max(x)) # 一次传一组 结果是一个包含每个分组最大值的 DataFrame。

    9500

    【疑惑】如何从 Spark 的 DataFrame 中取出具体某一行?

    如何从 Spark 的 DataFrame 中取出具体某一行?...我们可以明确一个前提:Spark 中 DataFrame 是 RDD 的扩展,限于其分布式与弹性内存特性,我们没法直接进行类似 df.iloc(r, c) 的操作来取出其某一行。...但是现在我有个需求,分箱,具体来讲,需要『排序后遍历每一行及其邻居比如 i 与 i+j』,因此,我们必须能够获取数据的某一行! 不知道有没有高手有好的方法?我只想到了以下几招!...1/3排序后select再collect collect 是将 DataFrame 转换为数组放到内存中来。但是 Spark 处理的数据一般都很大,直接转为数组,会爆内存。...给每一行加索引列,从0开始计数,然后把矩阵转置,新的列名就用索引列来做。 之后再取第 i 个数,就 df(i.toString) 就行。 这个方法似乎靠谱。

    4.1K30

    通俗易懂的 Python 教程

    监督学习 正式开始前,我们需要更好地理解时间序列和监督学习的数据形式。时间序列是一组按照时间指数排序的数字序列,可被看成是一列有序的值。...我们可以定义一个由 10 个数字序列组成的伪时间序列数据集,该例子中,DataFrame 中的单个一列如下所示: 运行该例子,输出时间序列数据,每个观察要有对应的行指数。...这种情况下,并不是时间序列不只有一组观察,而是多组(举个例子,气温和气压)。所有时间序列中的变量可被向前或向后 shift,来创建多元输入输出序列。更多详情下文会提到。...它帮助我们用机器学习算法探索同一个时间序列问题的不同框架,来找出哪一个将会产生具有更好效果的模型。这部分中,我们为 series_to_supervised() ,一个新的 Python 函数定义。...还可以看到,NaN 值得行,已经自动从 DataFrame 中移除。我们可以用随机数字长度的输入序列重复该例子,比如 3。这可以通过把输入序列的长度确定为参数来实现。

    2.5K70

    从 vue3 和 vite 源码中,我学到了一行代码统一规范团队包管理器的神器

    在源码共读第3期[3]中,我们学习了Vue 3.2 发布了,那尤雨溪是怎么发布 Vue.js 的?...一行代码统一规范包管理器。...直到有一天,发现 pnpm 文档 Only allow pnpm 文档[10] 上就有这个。好吧,吃了没看文档的亏。...可以做到一行代码统一规范包管理器"preinstall": "npx only-allow pnpm"。 也学习了其原理。only-allow 期待的包管理器和运行的包管理器对比。匹配失败,则报错。...文章写到这里,让我想起我2018年写的文章参加有赞前端技术开放日所感所想[21] 当时演讲的大佬说过一句话。无比赞同。 技术(开源)项目本质上是:理念、套路、规范的工具化。

    1.3K20

    通俗易懂的 Python 教程

    监督学习 正式开始前,我们需要更好地理解时间序列和监督学习的数据形式。时间序列是一组按照时间指数排序的数字序列,可被看成是一列有序的值。...我们可以定义一个由 10 个数字序列组成的伪时间序列数据集,该例子中,DataFrame 中的单个一列如下所示: 运行该例子,输出时间序列数据,每个观察要有对应的行指数。...这种情况下,并不是时间序列不只有一组观察,而是多组(举个例子,气温和气压)。所有时间序列中的变量可被向前或向后 shift,来创建多元输入输出序列。更多详情下文会提到。...它帮助我们用机器学习算法探索同一个时间序列问题的不同框架,来找出哪一个将会产生具有更好效果的模型。这部分中,我们为 series_to_supervised() ,一个新的 Python 函数定义。...还可以看到,NaN 值得行,已经自动从 DataFrame 中移除。我们可以用随机数字长度的输入序列重复该例子,比如 3。这可以通过把输入序列的长度确定为参数来实现。

    1.6K50

    Python数据分析 | Pandas数据变换高级函数

    一、Pandas的数据变换高级函数 ----------------- 在数据处理过程中,经常需要对DataFrame进行逐行、逐列和逐元素的操作(例如,机器学习中的特征工程阶段)。...例如,我们要对年龄age列进行调整(加上或减去一个值),这个加上或减去的值我们希望通过传入。...掌握DataFrame的apply方法需要先了解一下axis的概念,在DataFrame对象的大多数方法中,都会有axis这个参数,它控制了你指定的操作是沿着0轴还是1轴进行。...对每个Series执行结果后,会将结果整合在一起返回(若想有返回值,定义函数时需要return相应的值) 当然,DataFrame的apply和Series的apply一样,也能接收更复杂的函数,如传入参数等...3.2 applymap方法 applymap是另一个DataFrame中可能会用到的方法,它会对DataFrame中的每个单元格执行指定函数的操作,如下例所示: df = pd.DataFrame(

    1.4K31

    动态数组公式:动态获取某列中首次出现#NA值之前一行的数据

    标签:动态数组 如下图1所示,在数据中有些为值错误#N/A数据,如果想要获取第一个出现#N/A数据的行上方行的数据(图中红色数据,即图2所示的数据),如何使用公式解决?...图1 图2 如示例图2所示,可以在单元格G2中输入公式: =LET(data,A2:E18,i,MIN(IFERROR(BYCOL(data,LAMBDA(x,MATCH(TRUE,ISNA(x),0...如果想要只获取第5列#N/A值上方的数据,则将公式稍作修改为: =INDEX(LET(data,A2:E18,i,MIN(IFERROR(BYCOL(data,LAMBDA(x,MATCH(TRUE,ISNA...TAKE(data,i),i-1)),,5) 也可以使用公式: =LET(d,FILTER(E2:E18,NOT(ISNA(E2:E18))),DROP(d,ROWS(d)-1)) 如果数据区域中#N/A值的位置发生改变...,那么上述公式会自动更新为最新获取的值。

    24310

    esproc vs python 5

    A.run(x),针对序列/排列A中每个成员计算表达式x。T.record(A,k) 从T中指定位置k的记录开始,用A的成员依次修改T序表中记录的每个字段值,k省略时从最后一条开始增加记录。...df.groupby(by, as_index),按照item分组,不把item作为索引 初始化一个list用来存放各组的结果 循环分组,df.shift(1)是将df下移一行,(当前行/上一行)-1得到增长率...循环分组 取分组中第6个字段等于work phone的第一行的值,赋值给初始化的数组 修改数组第7个元素(索引是6)为数组的第8个元素(索引是7) 取分组中第6个字段等于work email的第一行的值的第...将结果放入初始化的list中 转换成dataframe。 df.rename(columns,inplace)修改字段名,更新到源数据上。 结果: esproc ? python ? ? 6....A13:新建表,定义两个变量,birthday:18+rand(18),表示年龄在18至35周岁,用今年的年份减去年龄,得到出生的年份的一月一日。city:从city表中随机选取一条记录。

    2.2K20

    pandas | 详解DataFrame中的apply与applymap方法

    比如我们将一个二维数组减去一个一维数组,numpy会先将一位数组拓展到二维之后再进行减法运算。看起来就像是二维数组的每一行分别减去了这一个一维数组一样。...可以理解成我们将减去这一个一维数组的操作广播到了二维数组的每一行或者是每一列当中。 ? 在上面这个例子当中我们创建了一个numpy的数组,然后减去了它的第一行。...我们对比下最后的结果会发现,arr数组当中的每一行都减去了它的第一行。 同样的操作在dataframe也一样可以进行。 ?...apply方法除了可以用在一整个DataFrame上之外,我们也可以让它应用在某一行或者是某一列或者是某一个部分上,应用的方法都是一样的。...比如我们可以这样对DataFrame当中的某一行以及某一列应用平方这个方法。 ? 另外,apply中函数的作用域并不只局限在元素,我们也可以写出作用在一行或者是一列上的函数。

    3.1K20

    高逼格使用Pandas加速代码,向for循环说拜拜!

    现在让我们建立一个标准线,用Python for循环来测量我们的速度。我们将通过循环遍历每一行来设置要在数据集上执行的计算,然后测量整个操作的速度。...我们编写了一个for循环,通过循环dataframe对每一行应用函数,然后测量循环的总时间。 在i7-8700k计算机上,循环运行5次平均需要0.01345秒。...然而,当我们在Python中对大范围的值进行循环时,生成器往往要快得多。 Pandas的 .iterrows() 函数在内部实现了一个生成器函数,该函数将在每次迭代中生成一行Dataframe。...更准确地说,.iterrows() 为DataFrame中的每一行生成(index, Series)的对(元组)。...类似地,以这种方式设计的许多库,包括Pandas,都将具有方便的内置函数,可以执行你正在寻找的精确计算,但速度更快。

    5.5K21

    Pandas 学习手册中文第二版:6~10

    (我明确选择了此值,因为它是DataFrame中的最后一行)。...为了说明这一点,下面的示例检索DataFrame的第一行,然后从每一行中减去该行,从根本上导致每一行的值与第一行之差: [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-9CFQVlTT...两个DataFrame对象之间的算术运算将同时按列标签和索引标签对齐。 以下代码提取了df的一小部分,并将其从完整的数据帧中减去。...然后,每一行代表特定日期的值的样本。 将 CSV 文件读入数据帧 data/MSFT.CSV中的数据非常适合读入DataFrame。 它的所有数据都是完整的,并且在第一行中具有列名。...重复记录可能具有不同的索引标签(在计算重复项时不考虑标签)。 因此,保留的行会影响结果DataFrame对象中的标签集。 默认操作是保留重复项的第一行。

    2.3K20

    DataFrame和Series的使用

    DataFrame和Series是Pandas最基本的两种数据结构 可以把DataFrame看作由Series对象组成的字典,其中key是列名,值是Series Series和Python...',index_col='id') 2.使用 DataFrame的loc 属性获取数据集里的一行,就会得到一个Series对象 first_row = data.loc[941] first_row...# 查看df类型 type(df) # 查看df的shape属性,可以获取DataFrame的行数,列数 df.shape # 查看df的columns属性,获取DataFrame中的列名 df.columns...,求平均,求每组数据条目数(频数)等 再将每一组计算的结果合并起来 可以使用DataFrame的groupby方法完成分组/聚合计算 df.groupby(by='year')[['lifeExp','...取值相同的数据放到一组中 df.groupby(‘continent’)[字段] → seriesGroupby对象 从分号组的Dataframe数据中筛序出一列 df.groupby(‘continent

    12010

    通宵翻译Pandas官方文档,写了这份Excel万字肝货操作!

    在 Pandas 中,索引可以设置为一个(或多个)唯一值,这就像在工作表中有一列用作行标识符一样。与大多数电子表格不同,这些索引值实际上可用于引用行。...pandas 通过在 DataFrame 中指定单个系列来提供矢量化操作。可以以相同的方式分配新列。DataFrame.drop() 方法从 DataFrame 中删除一列。...If/then逻辑 假设我们想要根据 total_bill 是小于还是大于 10 美元,来创建一个具有低值和高值的列。 在Excel电子表格中,可以使用条件公式进行逻辑比较。...填充柄 在一组特定的单元格中按照设定的模式创建一系列数字。在电子表格中,这将在输入第一个数字后通过 shift+drag 或通过输入前两个或三个值然后拖动来完成。...删除重复项 Excel 具有删除重复值的内置功能。熊猫通过 drop_duplicates() 支持这一点。

    19.7K20
    领券