以往在一些谍战或者是科幻电影中经常会有通过无人机从人群中搜索锁定目标的情节。现在,这种技术已经成为现实。在今年的Secutech 2017展会上,中国台湾无人机厂商经纬航太展示了与NEC联合研发的人脸识别无人机系统,其人脸识别技术主要来自NEC方面。 数据显示,NEC的人脸识别技术在美国NIST标准测试当中,识别率高达99.2%,连续四次全球最佳。 不过,人脸辨识要应用于无人机上却面对不少技术挑战。 人脸辨识的先决条件是要拍到解晰度足够的影像,可是无人机的拍摄高度却远高于一般监控镜头的
选自arXiv 机器之心编译 参与:Panda 深度卷积神经网络 (CNN) 已经推动人脸识别实现了革命性的进展。人脸识别的核心任务包括人脸验证和人脸辨识。然而,在传统意义上的深度卷积神经网络的 softmax 代价函数的监督下,所学习的模型通常缺乏足够的判别性。为了解决这一问题,近期一系列损失函数被提出来,如 Center Loss、L-Softmax、A-Softmax。所有这些改进算法都基于一个核心思想: 增强类间差异并且减小类内差异。腾讯 AI Lab 的一篇 CVPR 2018 论文从一个新的角度
台湾和硕(PEGATRON) 的智能家用机器人主要功能是可以利用深度学习发展的各种 AI 感知技术,例如人脸辨识、姿态侦测、火焰辨识等功能,来提供专属家人的体验及安全防护。
本文是学习github5.com 网站的报告而整理的学习笔记,分享出来希望更多人受益,如果存在侵权请及时联系我们
机器之心报道 参与:吴欣 据机器之心消息,腾讯 AI Lab 在大型人脸检测平台 WIDER FACE 与人脸识别平台 MegaFace 的多项评测指标中荣膺榜首,刷新行业纪录。此外,腾讯 AI Lab 已通过 arXiv 平台发表论文公开部分技术细节。 人脸检测是让机器找到图像视频中所有人脸并精准定位其位置信息,人脸识别是基于人脸图像自动辨识其身份,两者密切相关,前者是后者的前提和基础。在研究上,由于视角、光照、遮挡、姿态、年龄变化等复杂因素的干扰与影响,真实场景下的人脸检测与识别问题一直是
本文第一部分介绍在WIDER FACE全部测试中斩获第一的人脸检测算法Face R-FCN,第二部分介绍在MegaFace Challenge 2所有测试斩获第一的人脸识别算法Face CNN,第三部分介绍这些人脸技术的应用方向与前景。 腾讯AI Lab在国际最大、最难的人脸检测平台WIDER FACE与最热门权威的人脸识别平台MegaFace的多项评测指标中荣膺榜首,刷新行业纪录,展现其在计算机视觉领域中,特别是人脸技术上的强劲实力。 研究上,目前腾讯AI Lab已通过arXiv平台发表论文公开部分技术
深度学习在物体识别中的应用 ImageNet图像分类 深度学习在物体识别中最重要的进展体现在ImageNet ILSVRC3挑战中的图像分类任务。传统计算机视觉方法在此测试集上最低的错误率是26.172%。2012年,欣顿的研究小组利用卷积网络把错误率降到了15.315%。此网络结构被称为Alex Net,与传统的卷积网络相比,它有三点与众不同之处:首先,Alex Net采用了dropout的训练策略,在训练过程中将输入层和中间层的一些神经元随机置零。这模拟了噪音对输入数据的各种干扰使一些神经元对
【论文导读】 深度卷积神经网络(DCNN)在人脸识别中已经取得了巨大的进展,通常的人脸识别的核心任务都包括人脸验证与人脸识别,涉及到特征判别。很多模型都是使用Softmax损失函数去监督模型的训练,
公众号文章标题“提升”应该为“解决”。1 A 3D GAN for Improved Large-pose Facial Recognition 基于端到端的深度卷积神经网络进行人脸识别,依赖于大型
AI 科技评论按:12 月 18 日,腾讯 AI Lab 宣布,其研发的人脸算法 Face R-FCN 和 Face CNN 分别在人脸检测平台 WIDER FACE 与人脸识别平台 MegaFace 的多项测评中斩获冠军。获悉这一消息后,AI 科技评论与腾讯 AI Lab 计算机视觉中心总监刘威博士进行了交流。 Face R-FCN 算法为针对人脸检测问题而设计,而 Face CNN 则着眼于解决人脸识别问题。据刘威博士介绍,目前 Face R-FCN 的部分技术细节已在 arXiv 上公布,Face C
耐能新推出的AI晶片,结合了可重组式AI神经网路技术与模型压缩技术,来支援多种机器学习框架与CNN模型。
人脸识别[1]是指计算机通过基于个人的面部轮廓比较和分析模式,唯一地识别或验证人的生物测定技术。作为生物特征识别领域中一种基于生理特征的识别,人脸识别技术具以下优越性:第一、不需要人工操作,是一种非接触的识别技术;第二、快速、简便;第三、直观、准确可靠;第四、性价比高,可扩展性良好;第五、可跟踪性好;第六、具有自学习功能。
来源:PaperWeekly 本文共900字,建议阅读6分钟。 本文为你罗列近期Github上十大有趣的机器学习开源项目。 -01- Face Recognition #世界上最简单的人脸识别库 本项目号称世界上最简单的人脸识别库,可使用 Python 和命令行进行调用。该库使用 dlib 顶尖的深度学习人脸识别技术构建,在户外脸部检测数据库基准(Labeled Faces in the Wild benchmark)上的准确率高达 99.38%。 项目链接: https://github.com/agei
已有的基于深度学习的行人再辨识方法主要关注单张图的特征学习,其训练好的模型是固定的,在面对没见过的场景时缺乏自适应性。为此,迁移学习被大量地研究并用于增强模型在新场景下的适应性,但其代价是针对特定场景的应用需要深度学习训练。
来源:PaperWeekly 本文共900字,建议阅读6分钟。 本文为你罗列近期Github上十大有趣的机器学习开源项目。 -01- Face Recognition #世界上最简单的人脸识别库
编辑:闻菲 【新智元导读】日前,腾讯AI Lab在国际最大、最难的人脸检测平台WIDER FACE与热门人脸识别平台MegaFace多项评测指标获得第一,刷新了行业纪录。研究人员表示,通过有针对的优化,这些模型都可以投入实用,并且与竞赛中表现出的性能基本齐平。 人脸检测是让机器找到图像视频中所有人脸并精准定位其位置信息,是人脸识别的前提和基础。由于视角、光照、遮挡、姿态、年龄变化等复杂因素的干扰与影响,真实场景下的人脸检测与识别问题一直极具挑战。优秀的人脸技术在政务、金融、安防等领域都具有极高应用价值。 日
ChatGPT 的名称是由Chat 与GPT 两个字组合起来的,Chat 是多数人耳熟能详的单字,就是聊天的意思。因为ChatGPT 是个聊天机器人,所以很可以理解为什么名字中有个Chat,
港中文、哈工大和腾讯优图的一篇最新研究,可以将人脸照片转化成如同手绘版的卡通图,甚至还能反向转换,将二次元的卡通图像,转换成现实中可能的样子。
近日,《信息安全技术人脸识别数据安全要求》国家标准(以下简称“国标”)的征求意见稿面向社会公开征求意见。据悉,此次拟出台的国标主要是为解决人脸数据滥采、泄露或丢失,以及过度存储、使用等问题。
目前已经开发出基于脸部图片认知学习可以准确评估健康状况的计算机模型。据报导,最新研究发现,脸部辨识计算机模型日新月异,可准确预测BMI、体脂肪和血压,换言之,计算机模型看脸就可以猜出健康状况。或许有一天通过智能手机拍摄一张人体健康管理用的脸部特写照片,就可以知道人们今天气色如何,应该注意哪些方面的保养了。
为解决复杂环境下的目标视觉检测,人工场景与实际场景平行研究三部曲:
智能核心是对认知能力的升级革命,从感知、认知到决策执行,目前基础理论层、技术层的发展已经达到认知层面的建模与分析,应用层则体现为利用智能技术解决各种多模态目标识别的速度和精度,本文整理了目前市场上智能识别领域的典型应用进展及部分厂商。
这是一批基于StyleGAN2制作的新版人脸生成器,既包含基于旧版重制的网红脸,明星脸,超模脸,萌娃脸和黄种人脸生成器,也新增了两款更具美学意义的混血脸和亚洲美人脸生成器,并附赠有通配的人脸属性编辑器。做了这么多款生成器已经足够用,我将不再尝试做人脸生成器相关的新内容,而是去探索更实用、更能满足用户需求的生成技术,以更好地服务人民。
深度学习是近十年来人工智能领域取得的最重要的突破之一。它在语音识别、自然语言处理、计算机视觉、图像与视频分析、多媒体等诸多领域都取得了巨大成功。本文将重点介绍深度学习在物体识别、物体检测、视频分析的最新研究进展,并探讨其发展趋势。 1. 深度学习发展历史的回顾 现有的深度学习模型属于神经网络。神经网络的历史可追述到上世纪四十年代,曾经在八九十年代流行。神经网络试图通过模拟大脑认知的机理,解决各种机器学习的问题。1986 年Rumelhart,Hinton 和Williams 在《自然》发表了著名的
深度学习是近十年来人工智能领域取得的最重要的突破之一。它在语音识别、自然语言处理、计算机视觉、图像与视频分析、多媒体等诸多领域都取得了巨大成功。本文将重点介绍深度学习在物体识别、物体检测、视频分析的最新研究进展,并探讨其发展趋势。 1. 深度学习发展历史的回顾 现有的深度学习模型属于神经网络。神经网络的历史可追述到上世纪四十年代,曾经在八九十年代流行。神经网络试图通过模拟大脑认知的机理,解决各种机器学习的问题。1986 年Rumelhart,Hinton 和Williams 在《自然》发表了著名的反向传播算
作者:微软亚洲研究院 链接:https://www.guokr.com/article/439945/ 2010年,来自斯坦福大学、普林斯顿大学及哥伦比亚大学的科学家们启动ImageNet大规模视觉识别挑战赛(ImageNet Large Scale Visual Recognition Challenge,ILSVRC),推动了计算机视觉识别挑战的持续发展。据《纽约时报》称,在2014年计算机识别挑战中,计算机系统对目标识别准确率几乎提升了一倍,图像分类错误率则减少了一半。 在此基础上,由微软亚洲研究
目前市场上的主流HTML5游戏引擎是基于canvas或者WebGL进行开发的,但是无法触发长按识别二维码功能。而白鹭引擎 4.0提供了新的API,可以让canvas中的图片传递到DOM中并调整大小位置
3月10日消息,自从苹果推出 Face ID人脸识别取代 Touch ID指纹之后,外界也依然猜测苹果iPhone未来可能会重新加入指纹识别。据外媒报道,本周苹果获得了一项新的屏下指纹识别专利,不仅支持屏下指纹识别,还加入了对于血氧、心率、手指静脉的识别功能。
本篇针对目前信安标委《基于可信环境的远程人脸识别认证系统技术要求》标准规范征集意见稿进行学习!
中兴智能视觉大数据报道:张学友的演唱会三次抓捕了三名疑犯。官媒称,原因是会场入口的安检安装了人脸识别系统。中国正在大规模普及人脸识别,所以这并不令人感到多少意外。一家提供动态人像识别的公司产品经理孙健峰称,该公司在 2015 年就开始与深圳龙岗区警方合作,在当地地铁口、火车站、城中村、商超等场所建设 “深目” 系统。上线几个月后,便协助警方成功告破两起命案。 “目前我们的‘深目’系统已经在二十多个省市落地,协助警方破获了 4000 余起的案件。” 孙健峰说。简单来说,通过前端部署动态人像识别系统,AI 人脸识别技术可以在动态情况下捕捉人脸信息,” 每一个人从摄像头前面走过时,人脸的关键信息会从视频流里抽取出来,通过深度学习算法将其结构化,之后再同数据库进行比对,做到秒级内查到一个人的行动轨迹。”
本文介绍了AI技术在医疗领域的应用,包括在医疗影像识别、疾病预测、药物研发等方面的应用。同时,本文还介绍了一些最新的AI医疗技术和产品,包括腾讯的AI医疗产品、阿里云的医疗AI、医学影像专题社等。
人工智能一浪接一浪地席卷全球,AI的其中一个重要分支——计算机视觉,也如雨后春笋,不断涌现出新的想法和应用。人脸识别已经逐渐渗透我们的日常生活,机器能够认准人脸,想必大家都有所耳闻;而另一类计算机视觉的应用,是进行商品识别。 当前新兴的一些无人零售店,背后就需要机器对商品进行自动识别,拍图购物、AR互动营销等场景,也运用了商品识别技术。人工智能商业公司ImageDT,则利用商品图像识别技术提供2B商业服务,包括基于互联网图片大数据的商业分析,以及基于门店货架识别的渠道数据洞察,帮助消费品企业提升业绩。今天,
中兴智能视觉大数据报道:说起人脸识别研判预警系统可能很多人会比较懵,“人脸识别智能防控系统”它能自动捕捉动态影像,在数据库内进行比对,达到一定的相似度,会立即通过电脑指挥系统进行报警。这个是什么东东啊?在中兴视觉大数据看来用例子进行说明,大家可能更清楚点,在近些年的时候,其实有很多地方已经开始使用动态人脸识别研判预警系统了。
国家互联网信息办公室于2023年8月8日发布《人脸识别技术应用安全管理规定(试行)(征求意见稿)》(以下简称“征求意见稿”),以便进一步规范人脸识别技术应用,并向社会公开征求意见。
试试爱奇艺推出的这个卡通人脸识别基准数据集iCartoonFace,用它训练AI帮你找动漫素材,效率分分钟翻倍。
本文为2018 年 5 月 11 日在微软亚洲研究院进行的 CVPR 2018 中国论文宣讲研讨会中最后一个Session ——「Human, Face and 3D Shape」环节的三场论文报告。
又或者,只想给自己的二次元老婆剪个出场合辑,却不得不在各大搜索引擎搜索关于她的照片?
众所周知,训练GAN非常困难. In order to train at 256 x 256 we utilize:
本篇献给奋战在深度学习领域里的铲屎官们! 奇群科技执行长宋牧奇一直想为旗下团队熟悉的先进GPU技术研发实力,找到一个杀手级的应用,经过多次碰壁后,没想到最后却是在家中得到答案,爱猫的意外激发他为多猫家庭打造智慧喂食器的点子。 2008年宋牧奇从美国IBM离职,便与另一位创办人共同创立奇群科技,他们一开始专注于GPU技术,并将之应用于开发多人在线游戏服务器平台,尽管当时各大在线游戏厂商也认为,能让服务器效能提升百倍是一项很厉害的技术,不过,因为服务器的花费对于一款在线游戏整体营运成本来说,比例低的不足一提,
话不多说,先上图! 郭德纲赤裸裸被微软鄙视了。\(^o^)/ 以下是正文部分,逗个乐先! 微软靠颜值测年龄网站爆红 背后原理大揭秘 近来脸书上疯传「How Old Do I look?
明敏 发自 凹非寺 量子位 报道 | 公众号 QbitAI 不得强制索取非必要个人信息! 就在刚刚,最高人民法院发布司法解释,对人脸识别应用进行规范。 这真的是响应了广大人民群众的心声啊。 网友们对此纷纷表示:支持! 要知道,前段时间人脸识别会走光还在网上引起热议,暴露出人脸识别在应用上还存在很多不规范行为。 现在,最高法对小区物业、商场、应用程序等场景下的人脸识别做出司法解释,将进一步减少人脸识别被滥用的情况。 不得将人脸识别作为唯一验证 现在有许多小区,都选择用“刷脸”代替“刷卡”。 这确实能够让业主
精彩内容 经过多年市场验证,云端人脸识别无法满足企业对身份信息存储的高安全性要求,单一生物特征识别技术如虹膜识别、静脉识别等无法保证身份认证的准确,人脸识别技术该以何种姿态服务产业? 捷通华声作为国内
CV君:本文为52CV群友上海科技大学陈安沛同学投稿,介绍了他们ICCV 2019最新人脸3D重建的工作。效果非常赞,代码也已开源,欢迎大家参考~
场所码、电子哨兵、人脸识别的健康码门禁,疫情常态化下,众多专业的工具被广为所知。通过人脸识别或健康码识别,完成核验身份信息、人像的比对,查验健康码、核酸检测时效、行程以及体温等多项防疫信息数据,同时与智能通道闸机、门禁联动管控。绿码通行、红黄码及信息异常报警,这种无人值守、非接触式的智能设施,实现体温、健康防疫信息快速检测的同时,有效提高卡口管理工作效率,避免人员聚集,为织密筑牢疫情防控智慧网,持续做好防疫卡点提供重要支撑。
Geoffrey Hinton是深度学习的开创者之一,反向传播等神经网络经典算法发明人,他和他的团队提出了一种全新的神经网络,这种网络基于一种称为胶囊(capsule)的结构,并且还发表了用来训练胶囊网络的囊间动态路由算法。
在通往人工智能的路上,Google一直在不停地买买买。 谷歌在2011年成立AI部门,目前已经有100 多个团队用上了机器学习技术,包括Google搜索、Google Now、Gmail等, 并往其开源Android手机系统中注入大量机器学习功能(如用卷积神经网络开发Android手机语音识别系统) 。谷歌目前产品和服务依靠主要AI技术驱动,如谷歌使用深度学习技术改善搜索引擎、识别Android手机指令、鉴别其Google+社交网络的图像。 2015年8月,谷歌宣布架构重组,设立母公司Alphabet,谷歌
网红脸的标准:大眼睛、尖下巴、高鼻梁,面对上百张的网红照片,你能正确进行匹对吗?事实证明,这不仅是个眼力活儿,还是一个脑力活儿。 近日,蚂蚁金服的官方微博发布消息称,其研发的人工智能生物识别机器人“蚂
领取专属 10元无门槛券
手把手带您无忧上云