课堂是学生学习的主要场所,课堂学习是学生获取知识、培养能力、提高素质的主要渠道。系统科学的课堂考勤是保证各项教学计划有效落实和顺利执行的重要条件。有效的课堂考勤是创造良好学习氛围,形成良好班风、学风及增强学生的组织性和纪律性的必要条件,同时也是保证学校教学秩序的稳定、提高教学质量的重要措施。
现如今人脸识别应用已经大规模走进我们的的生活,但人脸识别技术的研究仍然是计算机视觉的热点,还有哪些待解的问题?从应用的角度哪些新技术更值得关注?
作者 | 汪彪 责编 | 何永灿 人脸识别技术不但吸引了Google、Facebook、阿里、腾讯、百度等国内外互联网巨头的大量研发投入,也催生了Face++、商汤科技、Linkface、中科云从、依图等一大波明星创业公司,在视频监控、刑事侦破、互联网金融身份核验、自助通关系统等方向创造了诸多成功应用案例。本文试图梳理人脸识别技术发展,并根据作者在相关领域的实践给出一些实用方案设计,期待能对感兴趣的读者有所裨益。 概述 通俗地讲,任何一个的机器学习问题都可以等价于一个寻找合适变换函
人脸识别技术不但吸引了Google、Facebook、阿里、腾讯、百度等国内外互联网巨头的大量研发投入,也催生了Face++、商汤科技、Linkface、中科云从、依图等一大波明星创业公司,在视频监控、刑事侦破、互联网金融身份核验、自助通关系统等方向创造了诸多成功应用案例。本文试图梳理人脸识别技术发展,并根据作者在相关领域的实践给出一些实用方案设计,期待能对感兴趣的读者有所裨益。
端到端深度人脸识别系统由三个关键要素构成:人脸检测(face detection)、人脸对齐(face alignment)和人脸表征(face representation)。其中,人脸检测的作用是定位静止图像或视频帧中的人脸位置。然后,人脸对齐将人脸校准到一个规范的视角,并将人脸图像裁剪到一个标准化像素大小。最后,在人脸表征阶段,从对齐后的图像中提取具有鉴别性的特征用于识别。
人脸识别技术不但吸引了Google、Facebook、阿里、腾讯、百度等国内外互联网巨头的大量研发投入,也催生了Face++、商汤科技、Linkface、中科云从、依图等一大波明星创业公司,在视频监控、刑事侦破、互联网金融身份核验、自助通关系统等方向创造了诸多成功应用案例。本文试图梳理人脸识别技术发展,并根据作者在相关领域的实践给出一些实用方案设计,期待能对感兴趣的读者有所裨益。 一、概述 通俗地讲,任何一个的机器学习问题都可以等价于一个寻找合适变换函数的问题。例如语音识别,就是在求取合适的变换函数,将输入
本文全面介绍了端到端深度学习人脸识别技术,包括人脸检测,人脸预处理和人脸 表征等方向,详细介绍了最新的算法设计,评估指标,数据集,性能比较等。
无约束人脸识别是计算机视觉领域中最难的问题之一。人脸识别在罪犯识别、考勤系统、人脸解锁系统中得到了大量应用,因此已经成为人们日常生活的一部分。这些识别工具的简洁性是其在工业和行政方面得到广泛应用的主要原因之一。但是同时,这种易用性掩盖了工具设计背后的复杂度和难度。很多科学家和研究人员仍然在研究多种技术以获得准确、稳健的人脸识别机制,未来其应用范围仍然会以指数级增加。2012 年,Krizhevsky 等人 [1] 提出 AlexNet,这一变革性研究是人脸识别领域的一项重大突破,AlexNet 赢得了 ImageNet 挑战赛 2012 的冠军。之后,基于 CNN 的方法在大部分计算机视觉问题中如鱼得水,如图像识别、目标检测、语义分割和生物医疗图像分析等。过去几年研究者提出了多种基于 CNN 的方法,其中大部分方法处理问题所需的复杂度和非线性,从而得到更一般的特征,然后在 LFW [12]、Megaface [13] 等主要人脸数据集上达到当前最优准确率。2012 年之后,出现了很多基于深度学习的人脸识别框架,如 DeepFace [14]、DeepID [15]、FaceNet [16] 等,轻松超越了手工方法的性能。
自七十年代以来,人脸识别已经成为了计算机视觉和生物识别领域被研究最多的主题之一。基于人工设计的特征和传统机器学习技术的传统方法近来已被使用非常大型的数据集训练的深度神经网络取代。在这篇论文中,我们对流行的人脸识别方法进行了全面且最新的文献总结,其中既包括传统方法(基于几何的方法、整体方法、基于特征的方法和混合方法),也有深度学习方法。
选自arXiv 机器之心编译 参与:Panda 深度卷积神经网络 (CNN) 已经推动人脸识别实现了革命性的进展。人脸识别的核心任务包括人脸验证和人脸辨识。然而,在传统意义上的深度卷积神经网络的 softmax 代价函数的监督下,所学习的模型通常缺乏足够的判别性。为了解决这一问题,近期一系列损失函数被提出来,如 Center Loss、L-Softmax、A-Softmax。所有这些改进算法都基于一个核心思想: 增强类间差异并且减小类内差异。腾讯 AI Lab 的一篇 CVPR 2018 论文从一个新的角度
作者 | Mengjia Yan、Mengao Zhao、Zining Xu、Qian Zhang、Guoli Wang、Zhizhong Su
论文名称:《GridFace: Face Rectification via Learning Local Homography Transformations》
在现实生活中,许多因素可能会影响人脸识别系统的识别性能,例如大姿势,不良光照,低分辨率,模糊和噪声等。为了应对这些挑战,之前的人脸识别方法通常先把低质量的人脸图像恢复成高质量人脸图像,然后进行人脸识别。然而,这些方法大多是阶段性的,并不是解决人脸识别的最优方案。
选自arXiv 作者:Mahmood Sharif等 机器之心编译 参与:Panda 生成对抗网络(GAN)已经是人工智能领域内的一个常用词了,但你听说过对抗生成网络(AGN)吗?近日,卡内基梅隆大学和北卡罗来纳大学教堂山分校的研究者在 arXiv 上发布的一篇论文提出了这种网络,可实现对当前最佳的人脸识别模型的神经网络攻击。 深度神经网络(DNN)已经在人脸验证(即确定两张人脸图像是否属于同一个人)方面超越了人类的水平。不幸的是,研究还表明使用对抗样本(adversarial example)就可以轻易
本文介绍的是CVPR2020 oral论文《Learning Meta FaceRecognition in Unseen Domains(MFG[1])》,作者来自明略科技集团明略科学院与中科院自动化研究所。
随着美国openAI公司的CahtGPT诞生,人工智能开启了再度觉醒状态。在这样的一个时代的大背景下,演变出了“智能+万物”的潜在主题。全球智能化,已经成为了一个必然的趋势。目前,对于国内很多机构都采取人工排班的方式,这样不仅浪费人力,增加成本,而且很容易出现各种错误。本智能排班系统能够根据员工偏好设置、排班规则、自定义规则等,综合考虑到店客流量、特殊需求等因素,采用遗传算法来智能化实现员工排班最优需求。同时,还可以根据每个员工的历史数据和绩效表现进行排班分析实现智能化预测,从而优化排班效率并提高员工的生产力和满意度。
人脸识别一直都是人工智能领域的研究热点,并被广泛应用于公共安全、金融支付等身份验证领域。
人脸识别(Face Recognition),是指对输入的图像或视频,判断其中是否存在人脸,进而依据人脸的面部特征,自动进行身份识别。 其过程可分为人脸检测、人脸特征提取和人脸识别三个阶段。人脸识别是身份认证的重要生物识别技术,也是计算机视觉领域研究最多的课题之一,经过近30年的研究,在受控和均匀的可见光条件下的传统人脸识别得到了很大的发展,目前已广泛应用于军事、金融、公共安全和日常生活等领域。
这里的会员指的是iCartoonFace:一个卡通人脸识别的基准数据集,爱奇艺与此同时设计了卡通和真人多任务域自适应策略来提高卡通人脸识别的性能。
本文是对发表于计算机视觉领域顶级会议ICCV 2021的论文“SynFace: Face Recognition with Synthetic Data” (基于生成数据的人脸识别)的解读。
本文是学习github5.com 网站的报告而整理的学习笔记,分享出来希望更多人受益,如果存在侵权请及时联系我们
本文是《人脸识别完整项目实战》系列博文第1部分,第2节《项目系统架构设计》,本章内容系统介绍:人脸系统系统的项目架构设计,包括:业务架构、技术架构、应用架构和数据架构四部分内容。
最近,相关科技媒体报道了最新一期的NIST人脸识别测评比赛,在仔细阅读了FRVT官方发布文档之后,发现国内有些媒体报道不是特别准确,因此在这篇报道中,结合自己专业知识探讨一下FRVT测评结果。
本文是《人脸识别完整项目实战》系列博文第1部分,第一节《完整项目运行演示》,本章内容系统介绍:人脸系统核心功能的运行演示。
机器之心报道 参与:吴欣 据机器之心消息,腾讯 AI Lab 在大型人脸检测平台 WIDER FACE 与人脸识别平台 MegaFace 的多项评测指标中荣膺榜首,刷新行业纪录。此外,腾讯 AI Lab 已通过 arXiv 平台发表论文公开部分技术细节。 人脸检测是让机器找到图像视频中所有人脸并精准定位其位置信息,人脸识别是基于人脸图像自动辨识其身份,两者密切相关,前者是后者的前提和基础。在研究上,由于视角、光照、遮挡、姿态、年龄变化等复杂因素的干扰与影响,真实场景下的人脸检测与识别问题一直是
随着社会经济和科学技术的飞速发展,人们的生活变得更加智能化、科学化。信息安全逐渐引起人们的关注,信息的应用不断进入人们的视野。普通的身份识别方式并不能有效保证信息安全。生物识别技术以其稳定性、独特性和高效性逐渐成为人们广泛关注和研究的对象。常见的生物识别技术有很多,比如虹膜、指纹、人脸等。其中,人脸识别技术正逐渐走向成熟。这一发展使得利用人脸识别技术进行身份识别和认证成为一种新的识别发展趋势。此前,人脸识别技术的应用主要应用于安防、金融等领域,而现在人脸识别技术无处不在。仔细观察可以发现,刷脸设备应用到生活的方方面面,如高铁站刷脸验票机、商业店铺刷脸缴费机、宿舍刷脸门禁系统等。
LFW数据集(Labeled Faces in the Wild)是目前用得最多的人脸图像数据库。该数据库共13,233幅图像,其中5749个人,其中1680人有两幅及以上的图像,4069人只有一幅图像。图像为250*250大小的JPEG格式。绝大多数为彩色图,少数为灰度图。该数据库采集的是自然条件下人脸图片,目的是提高自然条件下人脸识别的精度。该数据集有6中评价标准:
本文是《人脸识别完整项目实战》系列博文第1章《目录大纲篇》,本章内容系统介绍,《人脸识别项目完整实战》系列博文的目录结构,共8大部分53个章节。
近日,来自中科院计算所的人工智能国家队中科视拓宣布,开源商用级SeetaFace2人脸识别算法。
作者:熊霖 赵健 徐炎 采访:闻菲 【新智元导读】开发出精确的和可扩展的无约束人脸识别算法,是生物识别和计算机视觉领域长期以来不断追求的目标。为了促进非受限条件下的人脸识别,美国国家技术标准局(NIST)主办了IJB-A竞赛。新加坡松下研究院与新加坡国立大学LV组去年两次夺得冠军,项目负责人新加坡松下研究院的研究工程师熊霖进行了专访,分享技术细节以及参赛经验。 开发出精确的和可扩展的无约束人脸识别算法,是生物识别和计算机视觉领域长期以来不断追求的目标。然而,实现这一点难度非常大,因为“无约束”需要人脸识
You’ll never find us. But victim or perpetrator, if your number is up, we’ll find you. 你永远找不到我们。但无论是受害人还是行凶者,只要你的号码被列出来,我们就会找到你。 引子 4 月春光明媚,下班去公交车站的路上,笔者的同事掏出了口罩,把脸捂得严严实实。 ——过敏了? ——不是。 说话间,他指了指面前的红灯,还有一位正在闯红灯的大妈。随后跟我说,最近上海越来越多不守规则闯红灯的行人都收到了上海交警的短信提醒,提示号主某年
【编者按】微软亚洲研究院在人脸识别领域已经耕耘了近20年时间,从最早的子空间方法,到后来的局部描述子方法,再到现在的深度学习方法,历经了所有人脸识别技术的主流研究方法。微软亚洲研究院视觉计算组首席研究员孙剑博士撰写了本文,基于近期的两项人脸识别应用,深入浅出的介绍了这项应用背后的深度学习方法、人脸识别基础环节等内容。 近期,微软发布了一款有趣的应用 ——“微软我们”(TwinsOrNot.net),只需任意上传两张人物照片,就可以知道他们长的有多像,比如,测试你是否和某个明星长得很像,或者夫妻/男女朋友是不
我一定是对这颗i.MX RT的MCU太过于偏爱,之前已经在上面做了一个语音识别技术方案(见《AIoT的语音识别方案》),但总觉得我们还能挑战一下更复杂的应用,对于高性能和高运算量最有挑战的还是在视觉方面的应用,目前最广泛应用和接受的还是人脸识别,所以打算把下一个目标放在人脸识别上面。
我们对2020年全部计算机视觉综述论文进行了分方向梳理,本文为人脸识别方向,包括人脸识别、检测、面部反欺骗、3D人脸重建、deepfake等方向。
本文是《人脸识别完整项目实战》系列博文第3部分:程序设计篇(Python版),第1节《Python实时视频采集程序设计》,本章内容系统介绍:基于Python+opencv如何实现实时视频采集。
说到人工智能(Artificial Intelligence, AI)人们总是很容易和全知、全能这样的词联系起来。大量关于AI的科幻电影更给人工智能蒙上一层神秘的色彩。强如《黑客帝国》、《机械公敌》中的AI要翻身做主人统治全人类。稍弱点的《机械姬》里EVA懂得利用美貌欺骗中二程序员,杀死主人逃出升天。最不济也可以蠢萌蠢萌的像WALL·E能陪玩、送礼物还能谈个恋爱。 其实人工智能这个词在1956年达特茅斯会议上正式诞生时,目标就是想要让机器的行为看起来像是人所表现出的智能行为一样的“强”人工智能。然而人工智能
近日,汉柏科技人脸识别产品拿下了有着“设计奥斯卡”之称的德国红点设计奖,是人脸识别领域第一个获得该奖的产品。 顶尖的工业设计,严苛的红点大奖 源自德国,始于1955年的红点奖与德国“iF奖”、美国“IDEA奖”并称为世界三大设计奖,是国际公认的全球工业设计顶级奖项之一。该奖项以评选标准苛刻著称,入选产品必须有区别于其他同类产品的创新特点,代表着该领域全球最出色的工业设计水平。 能够得到红点奖评委会的认可绝非易事,比如2017年的红点奖入围作品就接近6000件,而最终获奖的只不过103件。但正因其严苛,甚至变
之前的人脸识别考勤系统,已经依靠face++和opencv基本完成了功能初步测试。最后调试下的情况是:
如今,数字化校园正逐渐在向校园智慧化转变,人脸识别、大数据、云计算等智能技术在校园场景逐步落地应用。智慧班牌,是其中的智能终端设备应用,那如何加深校园智慧化进程?
本文是《人脸识别完整项目实战》系列博文第13章《实时人脸检测程序设计》,本章内容详细介绍Win10 环境下,基于Visual Studio 2015 + Opencv + Dlib开发环境,如何实现实时视频流人脸检测程序的设计。本文内容已经同步录制成视频课程,课程地址:《人脸识别完整项目实战》
本文为人脸识别算法系列专题的综述文章,人脸识别是一个被广泛研究着的热门问题,大量的研究论文层出不穷,文中我们将为大家总结近些年出现的具有代表性的人脸识别算法。请大家关注SIGAI公众号,我们会持续解析当下主流的人脸识别算法以及业内最新的进展。
摘要:本文主要从静态人脸识别局限性的提出,对动态人脸识别技术进行了探讨,介绍其研究背景,工作原理,结果分析,给出了在生活领域中的应用情况,并分析了存在的难题,发展趋势以及在人工智能化潮中的重要作用。
人脸识别是机器学习的直接应用,这项技术已经被消费者、行业和执法机关广泛采用,它可能为我们的日常生活带来了便利,但也有严重的隐私问题。人脸识别已经超过了人类的工作效率,但是,在某些应用中实际实现时还存在问题。 立足于九十年代MIT的Eigenfaces方法,人脸识别第一次成功的大规模实现是2014年Facebook的DeepFace项目,准确性在实验室条件下达到了人类水平。从2014年开始,更大的训练数据集、GPU以及神经网络架构的快速发展进一步提高了人脸识别在通向现实世界可靠应用的更为丰富的上下文中的效率。
本文是《人脸识别完整项目实战》系列博文第14章《实时人脸特征点标定程序设计》,本章内容详细介绍Win10 环境下,基于Visual Studio 2015 + Opencv + Dlib开发环境,如何实现实时视频流人脸特征点标定程序的设计。本文内容已经同步录制成视频课程,课程地址:《人脸识别完整项目实战》
随着 5G 时代的到来,万物互联唱响了这个时代的主题曲,物联网日新月异 的发展,社会的信息程度显著提升。其次,人工智能技术的发展,大量人工智能技术走出实验室,以各种各样产品的形式极大的丰富了人们的日常生活。物联网技术和人工智能技术的完美融合,造就了智能家居这一种新的时代潮流,给人们的生活带来极大的便利性的同时,给人以更加舒适、快捷、智能的生活体验。智能家居如火如荼的发展,坚定了我们设计智能门锁的想法。
二十四、开集识别 68、OpenGAN: Open-Set Recognition via Open Data Generation 实际应用中,机器学习系统需要分析与训练数据不同的测试数据。在 K-way 分类中,这也被表述为开集识别,其核心是区分 K 个闭集类之外的开集数据的能力。 开放集识别的两个概念上优雅的想法是:1)通过利用一些异常数据作为开放集来学习开集与闭集的二分类判别器,以及 2)使用 GAN 无监督学习闭集数据分布。由于对异常数据的过度拟合,对各种开放测试数据的泛化能力很差,这些异常值不太
生物识别是根据人类生理特征(人脸、指纹、虹膜等)和行为特征(姿态、动作、情感等)实现身份认证的技术。在进行人体身份认证时,其主要通过计算机与光学、声学、生物传感器和生物统计学原理等高科技手段密切结合,利用人体固有的生理特性和行为特征来进行个人身份的鉴定。目前,常用的生物识别技术主要包括:人脸识别、指纹识别、虹膜识别、行为识别以及步态识别。
领取专属 10元无门槛券
手把手带您无忧上云