为全面分析人脸识别市场现状、面临的风险隐患及有效的安全保障措施,顶象近日发布《人脸识别安全白皮书》。该白皮书重点对人脸识别组成以及人脸识别安全面临的阿全风险进行了详细介绍与分析。
为全面分析人脸识别市场现状、面临的风险隐患及有效的安全保障措施,顶象近日发布《人脸识别安全白皮书》。《白皮书》就金融行业存在人脸安全风险进行了详细分析,并对在公共服务领域人脸安全的安全防护提出具体建议。
今年7月份,两大银行接连爆出多名储户的数百万存款被异地“刷脸”盗取,引发全社会关注。其实,因人脸安全问题导致资金被盗、被贷款安全事件已不是新鲜事。
近日,顶象发布《人脸识别安全白皮书》。该白皮书共有8章73节,系统对人脸识别的组成、人脸识别的内在缺陷、人脸识别的潜在安全隐患、人脸识别威胁产生的原因、人脸识别安全保障思路、人脸识别安全解决方案、国家对人脸识别威胁的治理等进行了详细介绍及重点分析。
近日,顶象发布《人脸识别安全白皮书》。《白皮书》对人脸安全事件、风险产生的原因进行了详细介绍及重点分析。
现如今人脸识别应用已经大规模走进我们的的生活,但人脸识别技术的研究仍然是计算机视觉的热点,还有哪些待解的问题?从应用的角度哪些新技术更值得关注?
起步阶段(1950s-1980s),这一阶段的人脸识别只是作为一般性的模式识别问题来研究,所采用的技术方案也是基于人脸几何结构特征的方法。
中兴智能视觉大数据报道:人脸识别,是基于人的脸部特征信息进行身份识别的一种生物识别技术。用摄像机或摄像头采集含有人脸的图像或视频流,并自动在图像中检测和跟踪人脸,进而对检测到的人脸进行脸部的一系列相关技术,通常也叫做人像识别、面部识别。人脸识别的应用集成了人工智能、机器识别、机器学习、模型理论、专家系统、视频图像处理等多种专业技术,同时结合中间值处理的理论与实现,是生物特征识别的最新应用,其核心技术的实现,展现了弱人工智能向强人工智能的转化。人脸识别在国内广为人知始于近几年,其实早在20世纪90年代人脸识别就已在美国、德国、日本等国家应用,作为新兴技术,人脸识别搭载“高科技”标签,广为产品厂商和用户喜爱。
为全面分析人脸识别市场现状、面临的风险隐患及有效的安全保障措施,顶象近日发布《人脸识别安全白皮书》。该白皮书对保障人脸信息安全、提升人脸识别算法精准度和保障人脸识别系统安全三方面给出了具体指导建议。
本文介绍了人脸识别技术的起源、发展、技术原理、应用以及面临的挑战和未来的发展趋势。人脸识别技术已经广泛应用于各个领域,如安防监控、人员考勤、金融支付等场景。随着技术的不断发展,人脸识别技术将越来越智能化和精准化,同时也将面临一系列的挑战和问题。未来,人脸识别技术将逐渐与其他技术相结合,实现更广泛的应用和发展。
本文是《人脸识别完整项目实战》系列博文第1部分,第2节《项目系统架构设计》,本章内容系统介绍:人脸系统系统的项目架构设计,包括:业务架构、技术架构、应用架构和数据架构四部分内容。
在好莱坞大片《速度与激情7》中有一个被称为“天眼”的系统。它可以调用世界上任何地方的摄像头,通过人脸识别技术来搜索你想要的人或事物,让其无所遁形。与之形成鲜明对比的是,提起现实中的安防,却仍然在依靠朝阳群众的举报来打击违法乱纪行为。网友调侃说:“朝阳群众已经成了可以与FBI、克格勃、军情六处等机构齐名的世界级情报机构。” 调侃的背后暴露出安防领域智能化的严重短板,而目前阶段蓬勃发展的人脸识别技术为智能安防的突破打开了一扇窗。近日,腾讯云在首届技术领袖峰会上宣布开放优图人脸识别技术
场所码、电子哨兵、人脸识别的健康码门禁,疫情常态化下,众多专业的工具被广为所知。通过人脸识别或健康码识别,完成核验身份信息、人像的比对,查验健康码、核酸检测时效、行程以及体温等多项防疫信息数据,同时与智能通道闸机、门禁联动管控。绿码通行、红黄码及信息异常报警,这种无人值守、非接触式的智能设施,实现体温、健康防疫信息快速检测的同时,有效提高卡口管理工作效率,避免人员聚集,为织密筑牢疫情防控智慧网,持续做好防疫卡点提供重要支撑。
人脸识别技术在安防领域得到了广泛的应用,但是传统的人脸识别算法存在着准确率低、受光线、角度、表情等影响的问题。近年来,深度学习技术的发展使得人脸识别算法的准确率得到了大幅度的提高。本文将介绍如何利用深度学习技术提高人脸识别的准确率。
导读:在本文中,我们将会接触到一个既熟悉又陌生的概念——人脸识别。之所以熟悉,是因为人脸识别技术在我们日常生活中应用极其广泛,例如火车站刷脸验票进站、手机人脸解锁等;之所以陌生,是因为我们可能并不了解人脸识别的原理,不了解人脸识别的任务目标、发展历程与趋势。
为全面分析人脸识别市场现状、面临的风险隐患及有效的安全保障措施,顶象近日发布《人脸识别安全白皮书》。《白皮书》就保险行业人脸安全事件进行了详细分析,并阐述了保险行业的人脸安全应用实践。
市场研究机构MarketsandMarkets发布一份全球人脸识别市场报告,预计2019年人脸识别市场规模将为32亿美元,2024年将增长至79亿美元,复合年增长率为16.6%。
什么?方案里没有人脸识别,看来你们的方案还是老旧的方案。上面就是客户给你的方案汇报一个总结。是不是很委屈,是不是很郁闷,你是不是想说,我们也不是人脸识别企业,为什么要懂这么多啊。
中兴视觉大数据报道:从人脸识别技术在智能安防下的一个具体应用场景开始:你在门口安装了摄像头,当有物体出现在摄像头范围内的时候,摄像头自动拍摄下图像,对图像进行识别;识别后如果发现是个人,并且长时间在门外并没有敲门进门等行为之后,就会及时报警给户主;或者,在夜晚的时候发现有物体移动,对物体进行识别,如果是可疑的物体就主动报警。人脸识别技术在安防领域已经有了很大的应用,未来将有更广阔的应用空间,因此对安防企业来说,人脸识别技术的市场潜力无可估量。
据凤凰网科技报道,某大型行的人脸识别系统存在漏洞,造成6名储户百万元现金被异地盗取。受害人表示,远在异地的犯罪分子,7次通过了银行的人脸识别,6次通过活检,一次都没识别出来犯罪分子使用的是假人脸。
本文介绍了人脸识别技术的原理和可靠性,指出同卵双胞胎、三胞胎或多胞胎在人脸识别技术面前也能被准确识别,同时化妆术和3D打印人脸也无法欺骗人脸识别系统。因此,以人脸为识别依据的人脸识别技术具有安全性与科学性,正在我们的生活中得到越来越广泛的应用,给我们的生活带来更多的安全与便利。
作者 | 东田应子 编辑 | 磐石 出品 | 磐创AI技术团队 【磐创AI导读】本文是深度学习之视频人脸识别系列的第一篇文章,介绍了人脸识别领域的一些基本概念,分析了深度学习在人脸识别的基本流程,并总结了近年来科研领域的研究进展,最后分析了静态数据与视频动态数据在人脸识别技术上的差异。欢迎大家点击上方篮子关注我们的公众号:磐创AI。 一、基本概念 1. 人脸识别(face identification) 人脸识别是1对n的比对,给定一张人脸图片,如何在n张人脸图片中找到同一张人脸图片,相对于一个分类问题,将
作为最特别的生物密码,人脸面临着过度化妆、整容等带来的复杂问题,人脸识别技术是否能正确地做出判断?
摘要:本文主要从静态人脸识别局限性的提出,对动态人脸识别技术进行了探讨,介绍其研究背景,工作原理,结果分析,给出了在生活领域中的应用情况,并分析了存在的难题,发展趋势以及在人工智能化潮中的重要作用。
人脸识别的英文名称是 Face Recognition,前段时间查找资料学的时候发现,不少人将人脸识别和人脸检测(Face Detection)混为一谈,很大程度上增加了查询学习资料的难度,这里在参照一些前辈的基础上,自己动手敲写代码,整理出了一个完整的版本。 此系列文章将从理论到实践进行整合:分三篇进行叙述,第一篇从零说人脸识别,保证大多数朋友能通过这篇文章了解到人脸识别的概念,并且能够形成一个基本的框架。第二篇将进行初步的实践,包括人脸图像的采集,和如何利用opencv已有的模型根据人
课堂是学生学习的主要场所,课堂学习是学生获取知识、培养能力、提高素质的主要渠道。系统科学的课堂考勤是保证各项教学计划有效落实和顺利执行的重要条件。有效的课堂考勤是创造良好学习氛围,形成良好班风、学风及增强学生的组织性和纪律性的必要条件,同时也是保证学校教学秩序的稳定、提高教学质量的重要措施。
人脸识别[1]是指计算机通过基于个人的面部轮廓比较和分析模式,唯一地识别或验证人的生物测定技术。作为生物特征识别领域中一种基于生理特征的识别,人脸识别技术具以下优越性:第一、不需要人工操作,是一种非接触的识别技术;第二、快速、简便;第三、直观、准确可靠;第四、性价比高,可扩展性良好;第五、可跟踪性好;第六、具有自学习功能。
自20世纪下半叶,计算机视觉技术逐渐地发展壮大。同时,伴随着数字图像相关的软硬件技术在人们生活中的广泛使用,数字图像已经成为当代社会信息来源的重要构成因素,各种图像处理与分析的需求和应用也不断促使该技术的革新。计算机视觉技术的应用十分广泛。数字图像检索管理、医学影像分析、智能安检、人机交互等领域都有计算机视觉技术的涉足。该技术是人工智能技术的重要组成部分,也是当今计算机科学研究的前沿领域。经过近年的不断发展,已逐步形成一套以数字信号处理技术。计算机图形图像、信息论和语义学相互结合的综合性技术,并具有较强的边缘性和学科交叉性。其中,人脸检测与识别当前图像处理、模式识别和计算机视觉内的一个热门研究课题, 也是目前生物特征识别中最受人们关注的一个分支。
人脸识别是近两年计算机视觉领域创业热潮中的一个热门方向,DeepID是这股热潮中不可忽视的一种人脸算法。针对DeepID的研发心得,人脸识别应用的现状、难点与未来,深度学习的实践经验等问题,CSDN记者近日采访了DeepID人脸算法发明者孙祎。 孙祎先后就读于清华大学、中国香港中文大学,2013年在CVPR上发表了用深度学习做面部特征点检测最早的论文。随后陆续发表了四篇在人脸识别领域有影响力的论文(ICCV’13,CVPR’14,NIPS’14,CVPR’15),使深度学习方法的人脸识别准确率远远超过
人脸识别是近两年计算机视觉领域创业热潮中的一个热门方向,DeepID是这股热潮中不可忽视的一种人脸算法。针对DeepID的研发心得,人脸识别应用的现状、难点与未来,深度学习的实践经验等问题,CSDN记者近日采访了DeepID人脸算法发明者孙祎。 孙祎先后就读于清华大学、香港中文大学,2013年在CVPR上发表了用深度学习做面部特征点检测最早的论文。随后陆续发表了四篇在人脸识别领域有影响力的论文(ICCV’13,CVPR’14,NIPS’14,CVPR’15),使深度学习方法的人脸识别准确率远远超过了人眼的准
近两年来,人脸识别技术引发的数据隐私问题一直备受公众讨伐。仅就2019年而言,全球范围内人脸识别技术使用相关的案件便层出不穷:瑞典数据保护机构(DPA)因当地一所高中使用人脸识别技术来记录学生出席情况开出金额20万瑞典克朗(约人民币14.6万元)的罚单;美国四个城市相继禁止政府部门使用人脸识别技术;微软公司疑似因隐私保护和授权瑕疵方面的原因删除了曾为全球最大的人脸识别数据库MS Celeb;Facebook因人脸识别功能或面临着可高达350亿美元的集体索赔;我国AI换脸软件ZAO因涉嫌侵犯隐私被工信部约谈整改...... 而近两个月,由于BLM运动的影响,人脸识别更是被推至风口浪尖,随着这项技术下沉到各个领域遍地开花,最终到达了一个需要法律深度介入的十字路口。
人脸识别在我们的生活中随处可见,例如在大楼门禁系统中,它取代了传统的门禁卡或密码,提高了进出的便捷性和安全性。在商场安保方面,人脸识别被广泛应用于监控系统,有助于识别和跟踪潜在的犯罪嫌疑人或失踪人员,提升了安全防范的能力。另外,手机解锁也是人脸识别技术的重要应用之一,它为用户提供了一种快捷、便利的身份验证方式,替代了传统的密码或指纹识别。
这是关于人脸的第①篇原创!(源码在第三篇) 人脸识别的英文名称是 Face Recognition,前段时间查找资料学的时候发现,不少人将人脸识别和人脸检测(Face Detection)混为一谈,很大程度上增加了查询学习资料的难度,这里在参照一些前辈的基础上,自己动手敲写代码,整理出了一个完整的版本。 此系列文章将从理论到实践进行整合:分三篇进行叙述,第一篇从零说人脸识别,保证大多数朋友能通过这篇文章了解到人脸识别的概念,并且能够形成一个基本的框架。第二篇将进行初步的实践,包括人脸图像的采集,和如何利用
早在去年10月份,我国就已开通全国65家知名景区的人脸识别入园机制。在景区峰值人流压力下,一秒快进的方式拯救了景点“大排长龙”的窘态,全面提升景区安全管理、服务管理水准,为旅行者带去便利。
IBM CEO Arvind Krishna在日前递交给美国国会议员的一封信中提到了这个决定,并表示“IBM反对使用任何技术(包括其他供应商提供的人脸识别技术)来监视大众、种族定性、侵犯基本人权和自由,以及用于任何与我们价值观及原则不一致的目的。”
选自arXiv 机器之心编译 机器之心编辑部 人脸识别是机器学习社区研究最多的课题之一,以 3D 人脸识别为代表的相关 ML 技术十年来都有哪些进展?这篇文章给出了答案。 近年来,人脸识别的研究已经转向使用 3D 人脸表面,因为 3D 几何信息可以表征更多的鉴别特征。近日,澳大利亚迪肯大学的三位研究者回顾了过去十年发展起来的 3D 人脸识别技术,总体上分为常规方法和深度学习方法。 从左至右依次是迪肯大学信息技术学院博士生 Yaping Jing、讲师(助理教授) Xuequan Lu 和高级讲师 Sh
人脸识别是机器学习的直接应用,这项技术已经被消费者、行业和执法机关广泛采用,它可能为我们的日常生活带来了便利,但也有严重的隐私问题。人脸识别已经超过了人类的工作效率,但是,在某些应用中实际实现时还存在问题。 立足于九十年代MIT的Eigenfaces方法,人脸识别第一次成功的大规模实现是2014年Facebook的DeepFace项目,准确性在实验室条件下达到了人类水平。从2014年开始,更大的训练数据集、GPU以及神经网络架构的快速发展进一步提高了人脸识别在通向现实世界可靠应用的更为丰富的上下文中的效率。
随着互联网和新科技的高速发展,在AI系统下。目前人脸识别系统也已经大众广泛运用。比如手机付款,手机开锁,车站的安检银行等等都会运用到人脸识别。人脸识别属于生物特征识别技术,人脸识别、大数据等技术为大众提供便利的同时,也存在着个人信息被过度采集的风险。人脸识别简单来说就是通过识别的人脸获取您的数据信息,在大数据时代下,人脸识别醉倒的问题就是个人隐私数据泄露的问题,一边是通过人脸识别能分析采集数据用户的隐私,通过隐私也可能会泄露个人的数据。一些不法用户通过人脸识别获取到了一些隐私数据也可以倒卖,所以人脸识别系统目前存在一些安全风险问题。
但那时技术还不成熟,如果只抠出脸部区域的大小,一旦碰到歪脸抬头的姿势,就可能只拿到半张脸……
这是关于人脸的第①篇原创!(源码在第三篇)
作者:Yitong Wang、Dihong Gong、Zheng Zhou、Xing Ji、Hao Wang、Zhifeng Li、Wei Liu、Tong Zhang
目前谈论起人脸识别,已经不是什么高深莫测的东西了。很多人都用过,切切实实的走进了人们的生活中,也确实给很多人带来了便利。从火车站的身份证人脸对比,小区的人脸识别门禁,超市的人脸识别储物柜,再到家庭的人脸识别智能锁,手机上的人脸识别解锁,人脸识别支付,各种嵌入式上面的人脸识别逐渐走进人们的生活。不管是否承认,我们确实逐渐进入了一个人工智能越来越繁荣的时代。嵌入式的ai也吸引了一大批爱好者的积极跟进。本文结合这几年的国内嵌入式上人脸识别的发展,谈一谈我的一些想法和对未来发展的一些预测。
最近,相关科技媒体报道了最新一期的NIST人脸识别测评比赛,在仔细阅读了FRVT官方发布文档之后,发现国内有些媒体报道不是特别准确,因此在这篇报道中,结合自己专业知识探讨一下FRVT测评结果。
大数据文摘记者谭婧、魏子敏 安防已经成为人工智能落地场景中的重要赛道,其涉及的智能视频分析、人脸识别等关键技术也在研究领域受到了极大的关注。那么安防领域中涉及的人脸识别有何痛点?人工智能+安防的未来又有哪些新的趋势? 10月29日,2017年第十六届中国国际公共安全博览会(CPSE安博会)在中国深圳会展中心开幕。在政府管理论坛上,清华大学媒体大数据认知计算研究中心主任王生进教授发表了题为《人像态势识别及其在智能视频监控中的应用》的演讲,他指出,目前我国视频监控建设卓有成效,摄像头的数量惊人,达到了2000多
自动人脸识别的经典流程分为三个步骤:人脸检测、面部特征点定位(又称Face Alignment人脸对齐)、特征提取与分类器设计。一般而言,狭义的人脸识别指的是"特征提取+分类器"两部分的算法研究。 在深度学习出现以前,人脸识别方法一般分为高维人工特征提取(例如:LBP,Gabor等)和降维两个步骤,代表性的降维方法有PCA, LDA等子空间学习方法和LPP等流行学习方法。在深度学习方法流行之后,代表性方法为从原始的图像空间直接学习判别性的人脸表示。 一般而言,人脸识别的研究历史可以分为三个
当前,全国两会正在进行时,最高人民法院办公厅主任郭竞坤就最高人民法院工作报告和最高人民检察院工作报告中提到的人脸识别技术被滥用等内容进行了解读。
领取专属 10元无门槛券
手把手带您无忧上云