为全面分析人脸识别市场现状、面临的风险隐患及有效的安全保障措施,顶象近日发布《人脸识别安全白皮书》。《白皮书》就金融行业存在人脸安全风险进行了详细分析,并对在公共服务领域人脸安全的安全防护提出具体建议。
现如今人脸识别应用已经大规模走进我们的的生活,但人脸识别技术的研究仍然是计算机视觉的热点,还有哪些待解的问题?从应用的角度哪些新技术更值得关注?
为全面分析人脸识别市场现状、面临的风险隐患及有效的安全保障措施,顶象近日发布《人脸识别安全白皮书》。《白皮书》就保险行业人脸安全事件进行了详细分析,并阐述了保险行业的人脸安全应用实践。
随着人工智能技术的飞速发展,人脸识别在人脸识别、人脸验证、人证对比、人脸美化编辑等四个方面应用非常的广泛。
作者 | 东田应子 编辑 | 磐石 出品 | 磐创AI技术团队 【磐创AI导读】本文是深度学习之视频人脸识别系列的第一篇文章,介绍了人脸识别领域的一些基本概念,分析了深度学习在人脸识别的基本流程,并总结了近年来科研领域的研究进展,最后分析了静态数据与视频动态数据在人脸识别技术上的差异。欢迎大家点击上方篮子关注我们的公众号:磐创AI。 一、基本概念 1. 人脸识别(face identification) 人脸识别是1对n的比对,给定一张人脸图片,如何在n张人脸图片中找到同一张人脸图片,相对于一个分类问题,将
今年7月份,两大银行接连爆出多名储户的数百万存款被异地“刷脸”盗取,引发全社会关注。其实,因人脸安全问题导致资金被盗、被贷款安全事件已不是新鲜事。
为全面分析人脸识别市场现状、面临的风险隐患及有效的安全保障措施,顶象近日发布《人脸识别安全白皮书》。该白皮书就保障人脸识别系统安全的能力列出具体要求,并推荐了专业的人脸安全解决方案。
最近看了很多人脸识别loss相关和GAN相关的paper,但是没有提纲挈领的把这些串起来。于是,一个小姐姐分享给我了这篇论文,阅读了一下,确实比较经典,很全面。在这里,将论文内容结合我自己的理解和在工作中进行的探索展开,分享给大家。
人脸关键点:也称为人脸关键点检测、定位或人脸对齐,根据人脸图像定位出人脸面部的关键区域(嘴巴、鼻子、眼睛、耳朵、脸部轮廓等等),其中根据72个关键点描述五官的位置来进行人脸跟踪。
起步阶段(1950s-1980s),这一阶段的人脸识别只是作为一般性的模式识别问题来研究,所采用的技术方案也是基于人脸几何结构特征的方法。
随着人工智能的高速发展,基于计算机视觉技术研究及应用也逐渐进入成熟阶段。其中,人脸识别是运用较多的一种技术,已经渗透到人类日常生活的方方面面。
场所码、电子哨兵、人脸识别的健康码门禁,疫情常态化下,众多专业的工具被广为所知。通过人脸识别或健康码识别,完成核验身份信息、人像的比对,查验健康码、核酸检测时效、行程以及体温等多项防疫信息数据,同时与智能通道闸机、门禁联动管控。绿码通行、红黄码及信息异常报警,这种无人值守、非接触式的智能设施,实现体温、健康防疫信息快速检测的同时,有效提高卡口管理工作效率,避免人员聚集,为织密筑牢疫情防控智慧网,持续做好防疫卡点提供重要支撑。
近日,顶象发布《人脸识别安全白皮书》。该白皮书共有8章73节,系统对人脸识别的组成、人脸识别的内在缺陷、人脸识别的潜在安全隐患、人脸识别威胁产生的原因、人脸识别安全保障思路、人脸识别安全解决方案、国家对人脸识别威胁的治理等进行了详细介绍及重点分析。
近日,顶象发布《人脸识别安全白皮书》。《白皮书》对人脸安全事件、风险产生的原因进行了详细介绍及重点分析。
据凤凰网科技报道,某大型行的人脸识别系统存在漏洞,造成6名储户百万元现金被异地盗取。受害人表示,远在异地的犯罪分子,7次通过了银行的人脸识别,6次通过活检,一次都没识别出来犯罪分子使用的是假人脸。
这是本文的下半部分,本文的上半部分以一个演示视频介绍了该人脸识别方案,并介绍了方案的软硬件环境和框架。
作者:junerver 链接:https://www.jianshu.com/p/ca3a12bc4911 引言 人脸识别这件事想来早已经不新鲜,在 Android 中的应用也并不广泛,所以网上相关资料乏善可陈。但是在面对特殊的应用场景时,人脸识别的功能还是有一定的用处的,比如在考勤领域。 网上能搜到的很多示例比较多的是基于科大讯飞或者face++实现的,其中有一个示例做的非常漂亮,推荐大家看一看,SwFace:https://github.com/tony-Shx/Swface。该项目基于讯飞SDK实现
摘要:本文主要从静态人脸识别局限性的提出,对动态人脸识别技术进行了探讨,介绍其研究背景,工作原理,结果分析,给出了在生活领域中的应用情况,并分析了存在的难题,发展趋势以及在人工智能化潮中的重要作用。
本文是《人脸识别完整项目实战》系列博文第3部分:程序设计篇(Python版),第1节《Python实时视频采集程序设计》,本章内容系统介绍:基于Python+opencv如何实现实时视频采集。
1 月 13 日,在浙江卫视播出的大型科技综艺节目《智造将来》中,代表支付宝最新研发进展的生物识别系统「310099」首次亮相,并成功完成挑战:从 500 位蒙面观众中找到目标人物。
但那时技术还不成熟,如果只抠出脸部区域的大小,一旦碰到歪脸抬头的姿势,就可能只拿到半张脸……
以前人脸识别在很多人的印象中,仅存在于虚拟的科幻电影中。但如今随着技术的快速发展,人脸识别技术已走进每家每户,平时进小区、过安检、用一下手机……都免不了需要“刷”脸。人脸识别技术给我们的生活制造了许多便利,但与此同时,也给我们带来了诸多安全挑战。
开始课程之前,需要准备一台安卓系统的手机,手机中安装AidLux软件,一般手机的应用市场就有,本次课程需要使用为面向开发者的内测版本AidLux 1.4beta,下载链接如下:
说起人脸识别,相信大家都不会感到陌生,在我们平时的工作生活中,人脸打卡、刷脸支付等等已经是应用的非常广泛了,人脸识别也给我们的生活带来了极大的便利。
为全面分析人脸识别市场现状、面临的风险隐患及有效的安全保障措施,顶象近日发布《人脸识别安全白皮书》。该白皮书重点对人脸识别组成以及人脸识别安全面临的阿全风险进行了详细介绍与分析。
AnalyticsZoo是由Intel开源,基于Apache Spark、TensorFlow、Keras和BigDL的大数据分析+AI平台,能够帮助用户利用Spark的各种流水线、内置模型、特征操作等,构建基于大数据的深度学习端到端应用。
视觉 AI 作为一个已经发展成熟的技术领域,具有丰富的应用场景和商业化价值,全球 40% 的 AI 企业都集中在视觉 AI 领域。近年来,视觉 AI 除了在智能手机、智能汽车、智慧安防等典型行业中发挥重要作用外,更全面渗入细分的实体行业,催生了如车站人脸实名认证、人脸支付、小区人脸门禁管理、酒店自助人脸实名登记等视觉 AI 的应用。
为人脸登录提供人脸注册集合,基于人脸进行无动作活体检测、及后台在线活体检测算法,判断用户为真人,保障业务环节中的用户真实性判断。
人脸识别(Face Recognition)是一种依据人的面部特征(如统计或几何特征等),自动进行身份识别的一种生物识别技术,又称为面像识别、人像识别、相貌识别、面孔识别、面部识别等。通常我们所说的人脸识别是基于光学人脸图像的身份识别与验证的简称。
这几年人脸识别技术在国内发展飞速,给生活带了很多便利,这个大家应该都有体会。早几年进高铁站还比较麻烦,要先排长队,得让检票口的工作人员一个一个查看证件然后“啪”地戳章,才能进站。很多人应该都和我一样想过一个问题,那为什么不多设几个口呢?我还专门问了朋友,朋友说都知道排长队体验不太好,不过多开一个口,就要多雇几个人,不但要一直开工资,还要有保险等各类配套的保障类支出,用人成本很高,所以二者只能相互取平衡。
如今,人脸识别技术在生活中的应用已经越来越多。2017年12月25日,腾讯社交广告、微信支付与绫致时装集团达成合作,依托于腾讯优图实验室的人脸识别技术等,在全国首次推出人脸智慧时尚店。在深圳和广州同时开业的JACK&JONES、VERO MODA人脸智慧时尚店,让“靠脸购物”成为现实:走进一家线下门店,你裤兜里不用揣着胀鼓鼓的钱包,不用走到前台掏出手机,刷脸注册会员、刷脸试装、刷脸支付……“靠脸”就能买到心仪的潮流服饰。 一次完整的“刷脸”购物是怎样的体验? 在这两家人脸智慧时尚店中,全新的智慧购物体验
今天,也就是 2017 年 9 月 11 日,小米发布了两款手机产品 Note 3 和 MIX 2, 其中,Note 3推出了一项新功能,人脸解锁。 以后,请忘掉密码,忘掉指纹,欢迎走进看脸的时代。 首先,来看看小米 MIX 2 和 Note 3: 小米 Note 3 其实就是大屏版的小米 6,屏幕尺寸升级为 5.5 英寸,处理器则降级为高通骁龙 660 。后置摄像头的配置与小米 6 相同,依旧是 1200 万像素的广角镜头 + 1200 万像素的长焦镜头,前置摄像头则升级到了 1600 万像素,2μm
现如今的人脸识别技术在金融、安防等领域的应用实际上的效果要比实验室里的差很多,某高校引入人脸识别晨读打卡,由于反应速度太慢,到中午还排着很长的队。可见人脸识别技术在实际应用中,由于各种物理因素(光照、角度、对焦、人鱼摄像头的距离等)导致抓拍的图片质量比较差,图片又经过网络传输到局域网进行对比,匹配识别(这个处理过程比较速度太慢),使得实际效果大打折扣。在大多数情况下,实际抓拍图像质量远低于训练图像质量。
金磊 发自 凹非寺 量子位 报道 | 公众号 QbitAI 人脸识别领域,中国队再次传来捷报。 全球最大规模人脸数据集发布。 首次包含数百万ID和数亿图片。 这就是由芯翌科技与清华大学自动化系智能视觉实验室合作,所推出的 WebFace 260M,相关研究已被CVPR 2021接收。 并且,基于其所清洗的数据集 WebFace42M,在最具挑战IJBC测试集上,也已经达到了SOTA水平。 而它所带来的“全球之最”还不止于此。 以这项数据集为基础,芯翌科技在最新一期的NIST-FRVT榜单上,戴口罩人脸识
本文是《人脸识别完整项目实战》系列博文第1章《目录大纲篇》,本章内容系统介绍,《人脸识别项目完整实战》系列博文的目录结构,共8大部分53个章节。
导读:在本文中,我们将会接触到一个既熟悉又陌生的概念——人脸识别。之所以熟悉,是因为人脸识别技术在我们日常生活中应用极其广泛,例如火车站刷脸验票进站、手机人脸解锁等;之所以陌生,是因为我们可能并不了解人脸识别的原理,不了解人脸识别的任务目标、发展历程与趋势。
本文是《人脸识别完整项目实战》系列博文第1部分,第2节《项目系统架构设计》,本章内容系统介绍:人脸系统系统的项目架构设计,包括:业务架构、技术架构、应用架构和数据架构四部分内容。
1月6日,美国国家标准与技术研究院(NIST)公布了最新的人脸识别算法测试(FRVT)成果,格灵深瞳再次刷新纪录:在7项测试子任务中,获得2项第一、3项第二,综合排名世界第一的成绩。
中兴视觉大数据报道:在2018年5月7日的时候,珠海机场在东指廊率先启用安检人脸识别系统。此次珠海机场启用的人脸识别系统将安检验证信息系统和人脸识别系统有机结合,使人脸识别系统与安检信息系统在一个电脑界面内显示。旅客过检时,该系统将自动、快速、连续抓拍旅客脸部图像用于和旅客所出示的身份证相比对,并在1秒内显示与证件比对相似度参考值。在有效甄别旅客是否冒用证件等方面有很强的专业性和实用性,无论在判别速度还是准确度上,都能够为安检员提供极大的参考和帮助。
深度学习是一种非常强大的机器学习技术,它在许多领域都有广泛的应用。其中,图像识别是深度学习最成功的应用之一。本文将详细介绍深度学习在图像识别方面的应用。
本文是《人脸识别完整项目实战》系列博文第1部分,第一节《完整项目运行演示》,本章内容系统介绍:人脸系统核心功能的运行演示。
这是一款大象机器人生产的小六轴机械臂,以树莓派4B为微处理器,ESP32为辅助控制,结构是中心对称结构(仿工业结构)。mechArm 270-Pi本体重量1kg, 负载250g,工作半径270mm,设计紧凑便携,小巧但功能强大,操作简单,能与人协同、安全工作。
我们知道人脸识别在这几年应用相当广泛,人脸考勤,人脸社交,人脸支付,哪里都有这黑科技的影响,特别这几年机器学习流行,使得人脸识别在应用和准确率更是达到了一个较高的水准。
课堂是学生学习的主要场所,课堂学习是学生获取知识、培养能力、提高素质的主要渠道。系统科学的课堂考勤是保证各项教学计划有效落实和顺利执行的重要条件。有效的课堂考勤是创造良好学习氛围,形成良好班风、学风及增强学生的组织性和纪律性的必要条件,同时也是保证学校教学秩序的稳定、提高教学质量的重要措施。
在这一新研究中,科学家们只需用普通打印机打出一张带有图案的纸条贴在脑门上,就能让目前业内性能领先的公开 Face ID 系统识别出错,这是首次有 AI 算法可以在现实世界中实现攻击:
当各路资本都蜂拥而至某一领域的时候,其也就结束了淘金的黄金时期,当前的人脸识别正处于这一阶段。
编者注:本文根据山世光在 CNCC 2016 可视媒体计算论坛上所做的报告《深度化的人脸检测与识别技术:进展与问题》编辑整理而来,在未改变原意的基础上略有删减。 山世光,中科院计算所研究员,中科院智能信息处理重点实验室常务副主任。主要从事计算机视觉、模式识别、机器学习等相关研究工作。迄今已发表CCF A类论文50余篇,全部论文被Google Scholar引用9000余次。曾应邀担任过ICCV,ACCV,ICPR,FG等多个国际会议的领域主席(Area Chair)。现任IEEE Trans. on Ima
人脸识别的英文名称是 Face Recognition,前段时间查找资料学的时候发现,不少人将人脸识别和人脸检测(Face Detection)混为一谈,很大程度上增加了查询学习资料的难度,这里在参照一些前辈的基础上,自己动手敲写代码,整理出了一个完整的版本。 此系列文章将从理论到实践进行整合:分三篇进行叙述,第一篇从零说人脸识别,保证大多数朋友能通过这篇文章了解到人脸识别的概念,并且能够形成一个基本的框架。第二篇将进行初步的实践,包括人脸图像的采集,和如何利用opencv已有的模型根据人
领取专属 10元无门槛券
手把手带您无忧上云