这是发生在2019年的事情,被错误逮捕的对象,是一位名叫Robert Williams的黑人男子,在交了1000美元后,他才被保释出去。
【新智元导读】旷视科技最新宣布4.6亿美元C轮融资,创下AI融资记录。当下,人脸识别技术做到了什么程度?未来计算机视觉创业还有没有机会?在上周日第二届微软亚洲研究院院友会年度大会上,微软全球执行副总裁沈向洋主持,商汤、旷视、依图和中科视拓的创始人/CEO/首席科学家——5位微软亚洲研究院院友坐在一起,共论人脸识别的技术趋势与商业落地。商汤、旷视、依图这些人脸识别独角兽各自的定位和发力点在哪里?他们怎么看待彼此和整个行业?本文将告诉你答案。 旷视科技昨天夜间宣布了金额高达4.6亿美元的C轮融资,引起热议。 2
白交 发自 凹非寺 量子位 | 公众号 QbitAI 只是因为被AI识别成盗窃犯,他就被警察送进监狱。 即便他从未去过案发现场,即便那个地方距他居所将近1000公里。 更离谱的是,据律师透露的消息,他还比监控录像中的罪犯轻了40磅(36斤)! 即便如此,执法部门还是对他进行了逮捕,让他在监狱一个星期。 有相关顾问表示:这项技术已导致至少三起错误逮捕。 将面部识别当做逮捕嫌疑人的唯一理由,是一种不断增长的趋势。 靠算法来抓人 28岁住在佐治亚州迪卡尔布县的里德,正驱车前往与母亲的感恩节后期庆祝活动。 他怎么
根据中商产业研究院发布的《2019-2024年中国机器视觉行业前景及投资机会研究报告》显示,2018年中国机器视觉市场规模首次超过100亿元;而随着行业技术提升、产品应用领域拓展,机器视觉市场将进一步扩大,预计在2019年机器视觉市场规模将近125亿元。
新年伊始,关心国外动态的同学一定清楚,现在全美最关心的可不是什么新冠疫情,而是全国各地到处在发生的各种歧视黑人的种族歧视游行,尤其是不断有白人警察恶意对待黑人群众的新闻爆出,犹如星星之火可以燎原,有愈演愈烈之势。 这不,又有人翻出一起去年发生的案件,但这次被指责的除了白人警察却牵扯上了人脸识别功能。究竟是怎么一回事呢? 案件发生在去年1月,在美国新泽西州伍德布里奇市的一个名为汉普顿的酒店,酒店人员向警方报案,声称有人在酒店礼品店偷了糖果和其他零食。待警方赶到后,嫌疑人提供了一张驾照作为身份证明。 可以清
当前大多数监狱的视频监控系统安防设施普遍落后,存在设备无法正常会用、画面不清晰、网络故障等问题,加上传统人工巡检方式落后,人工需求量大、信息化程度较低,监狱监控系统亟需改革。
随着以深度学习为代表的人工智能技术的成熟,国内众多行业都在利用人工智能推进行业变革与创新,积极探寻有效、有价值的应用场景进行商业化落地,其中尤以安防行业表现最为活跃。
人脸识别在我们的日常生活之中非常常见,手机解锁需要通过人脸识别,进入学校图书馆、宿舍门禁也需要人脸识别,在付款的时候同样可以利用人脸识别进行线上支付。人脸识别方便了大家的生活,也让很多人在出门的时候甚至连手机都不用带,只需要靠着一张脸就可以轻松完成“衣食住行”,造就出真正的“靠脸的社会”。那么人脸识别究竟有什么作用呢?它背后的安全性又是如何的呢?
中兴智能视觉大数据报道:武汉石化与华中科技大学合作开发的现场安全智能管理系统,近日,在武汉石化炼油结构调整项目装置施工区域投用,该系统是迄今中石化重点建设项目首家采用。 这套集人脸机器视觉识别、人机实时位置跟踪、电子围栏准入管理功能于一体的智能管理系统的投用,可对不安全行为、状态追溯,提高安全风险管控水平和效率,强化对承包商现场施工作业的安全管理。
面对当下的行业,阅面背靠嵌入式视觉算法,以图像识别消费级产品切入,立志做一个行业突破者。 当下,人机交互成为了人工智能技术发展的一大重点领域。在过去的2016年里,除了语音交互技术,视觉交互的发展速度
前一段时间,有司机冒充赵薇老公到公证处通过人脸识别技术办理了委托公证证明,以委托人的身份卖掉了赵薇家一处价值千万的豪宅。这条新闻不禁让人们对于人脸识别的准确性和安全性持怀疑态度。 对比现在的生物识别技术:指纹、人脸和虹膜,他们的误识率分别在 0.4%、2.5% 和 0.0001%。相较前两者而言,虹膜识别误识率可低至百万分之一。 在上周雷锋网接触了一家虹膜识别技术的创业公司——聚虹光电,其创始人宫雅卓在上海交通大学读博士时便开始研究虹膜识别,在这个领域已经有 15 年的经验。 几年前他们攻克了中国人黑色虹膜
中兴智能视觉大数据报道:再过一些时间,2018年高考将正式拉开大幕,本次高考广东肇庆中学,作为全省两个第一批试点的考点之一,将在今年高考中首次使用人脸识别技术,有关人脸识别的应用越来越常态化了。
机器之心原创 作者:高静宜 「身份验证是整个互联网金融的基础,要做到从实名到实人,生物识别在这里起到了很重要的作用。」蚂蚁金服生物识别技术负责人、全球核身平台资深专家陈继东告诉机器之心。生物识别技术的成熟、金融支付安全性与使用体验的更高要求,正推动互联网金融公司、商业银行对生物识别认证技术的开发与应用。2015 年 3 月,阿里巴巴集团执行主席马云在德国 CeBIT 展会开幕式上发布并演示了人脸识别支付认证技术,同年年末,蚂蚁金服「刷脸」认证在支付宝和网商银行正式上线。今年 2 月 21 日,蚂蚁金服「刷
中兴智能视觉大数据报道:人脸识别,是基于人的脸部特征信息进行身份识别的一种生物识别技术。用摄像机或摄像头采集含有人脸的图像或视频流,并自动在图像中检测和跟踪人脸,进而对检测到的人脸进行脸部的一系列相关技术,通常也叫做人像识别、面部识别。人脸识别的应用集成了人工智能、机器识别、机器学习、模型理论、专家系统、视频图像处理等多种专业技术,同时结合中间值处理的理论与实现,是生物特征识别的最新应用,其核心技术的实现,展现了弱人工智能向强人工智能的转化。人脸识别在国内广为人知始于近几年,其实早在20世纪90年代人脸识别就已在美国、德国、日本等国家应用,作为新兴技术,人脸识别搭载“高科技”标签,广为产品厂商和用户喜爱。
摘要:本文主要从静态人脸识别局限性的提出,对动态人脸识别技术进行了探讨,介绍其研究背景,工作原理,结果分析,给出了在生活领域中的应用情况,并分析了存在的难题,发展趋势以及在人工智能化潮中的重要作用。
AI 成为新基建风口模式下的一个重要选题,让人们对于 AI 的热情空前高涨。从一开始的烧钱阶段到今天的确定性发展,AI 一直渗透着人们的生活,从自动驾驶到人脸识别都是如此。其中,人脸识别技术应用较为广泛。
雷锋网按:本文内容来自云从科技创始人、中国科学院百人计划周曦博士在硬创公开课的分享。在未改变原意的基础上进行了编辑整理。 明明可以靠脸吃饭”这句话不再只是一个网络段子,随着人脸识别技术的普及,不光可以靠“刷脸”支付吃喝玩乐的花费,现在连银行办业务都可以“刷脸”了。 最近两年,国内各家中小银行和四大行地方分行已经陆续将人脸识别技术用于日常业务,前几日,四大行中的农行更是首先在全国范围应用人脸识别技术。 但是,银行业务光凭“刷脸”真的靠谱吗?本期公开课特意邀请到云从科技创始人、图像识别领域权威周曦博士为大家答疑
【新智元导读】 2017年的“315”落下帷幕,人脸识别技术公司纷纷躺枪。16日一大早,大家纷纷发表声明,表示自家的人脸识别技术还是相当安全的。本文整理了各家的回应,由此也可以看到,这些科技公司是否真的“躺枪”?人脸识别技术近年来持续火热,那么真实的行业发展状况如何?商业化应用中是否真的会如此轻易就被攻破?来看看专家们怎么说。 一年一度的“315” 落下帷幕,伴随着人工智能的火热,相关技术应用也在这场以“打假”、“维护消费者权益”为名的晚会上被点名。其中最受关注的一个便是——人脸识别。 晚会现场,主持人现
AI布控球基于前端边缘AI计算及后端云平台计算,AI布控球集成人脸识别、安全帽识别等的AI视频图像分析算法,通过计算机视觉技术对图像、人脸、场景、视频等进行深度学习,识别并标示图像、场景、视频内容,并对自定义的行为、意图进行识别并预警。 AI识别能力介绍: 着装检测:针对施工区域的人员是否戴安全帽。 人脸检测:针对施工区域的人员是否陌生人(黑名单)。 行为检测:针对施工区域内人员是否吸烟。 区域检测:针对规定的区域划线后检测是否在区域内或区域外。
书店、超市、服装店、便利店等零售场景,随着信息科技化的进步逐步的改变管理方式,转型升级,向信息化、智慧化转变,引入人脸识别系统终端应用。那么,在零售场景,人脸识别系统终端设备应用有哪些体现?
上周,雷锋网AI掘金志邀请到了触景无限副总裁赵寒伟做客雷锋网公开课,以“「边缘计算」在地铁等城市级场景下的实战复盘”为题进行了干货分享。
该文内容较老,但对入门者还是有很强的学习意义,可以了解人脸识别的历程与技术发展。 人脸检测/跟踪 人脸检测/跟踪的目的是在图像/视频中找到各个人脸所在的位置和大小;对于跟踪而言,还需要确定帧间不同人脸间的对应关系。 1.Robust Real-time Object Detection. Paul Viola, Michael Jones. IJCV 2004. 入选理由: Viola的人脸检测工作使得人脸检测真正变得实时可用。他们发表了一系列文章,这篇是引用率最高的一篇。 2.Fast rotatio
当各路资本都蜂拥而至某一领域的时候,其也就结束了淘金的黄金时期,当前的人脸识别正处于这一阶段。
人脸识别技术在国内的布局可以说是畅行无阻,当然这里的人民已经习惯于公权力的监控,李彦宏也说了,“中国人对隐私没有那么敏感”。
雷锋网按:本文根据旷视科技商业产品总监李晨光在高交会《读脸·对话——AI 技术风暴沙龙》的演讲内容整理而来,主要谈论人工智能如何商业化的问题。 人工智能如何商业化一向被人关注 “人工智能如何商业化”一
智能时代已悄然到来,"刷脸"逐渐成为了新的风潮。在人脸识别技术商业化应用领域不断扩张的趋势下,"刷脸"办事正愈发常见。人脸识别,是基于人的脸部特征信息进行身份识别的一种生物识别技术。用摄像机或摄像头采集含有人脸的图像或视频流,并自动在图像中检测和跟踪人脸,进而对检测到的人脸进行脸部识别的一系列相关技术,通常也叫做人像识别、面部识别。
为人脸登录提供人脸注册集合,基于人脸进行无动作活体检测、及后台在线活体检测算法,判断用户为真人,保障业务环节中的用户真实性判断。
声纹识别最早是在40年代末由贝尔实验室开发,主要用于军事情报领域,随着该项技术的逐步发展,60年代末后期在美国的法医鉴定、法庭证据等领域都使用了该项技术,从1967年到现在,美国至少5000多个案件包括谋杀、强奸、敲诈勒索、走私毒品、赌博,政治腐败等都通过声纹识别技术提供了有效的线索和有力的证据。特别强调的是,声纹鉴别目前已经是公安部的标准,是可以作为证据进行鉴定的。
互联网和智能技术的快速发展,人脸识别在应用领域运用到的场景越来越多,有更多新的应用。因为新冠疫情的原因,人脸识别一体和测温系统结合应用广泛,人脸识别测温一体机的应用市场在上升,为场景提供更人性化、便捷化、安全化的使用体验。
随着软件算法和物理终端的进步,人脸识别现在越来越被广泛运用到生活的方方面面,已经成为了重要的身份验证手段,但同时也存在着自身的缺陷,目前常规人脸识别技术可以精准识别目标人像特征,并迅速返回比对结果,但未加入防御照片图像等伪造人脸的技术,无法辨别实时目标人脸的真假情况,在实际身份核验场景中,容易被人脸照片、人脸视频、3D面具等攻击行为干扰,因此如何高效抵御各类欺骗行为攻击,是人脸识别技术迫切需要解决的问题。
随着人工智能技术的飞速发展,人脸识别在人脸识别、人脸验证、人证对比、人脸美化编辑等四个方面应用非常的广泛。
4月13日结束的计算机视觉沙龙圆满落幕。本期沙龙从构建图像识别系统的方法切入,讲述腾讯云人脸识别、文字识别、人脸核身等技术能力原理与行业应用,为各位开发者带来了一场人工智能领域的技术开拓实践之旅。下面是范锦老师关于腾讯云人脸识别系统在传统行业的应用与落地的总结。
昨晚的央视315晚会上,人脸识别技术被曝存在安全隐患。不少观众看到主持人在现场技术人员支持下,仅凭两部手机、一张随机正面照片及一个换脸App,分别就一张”眨眨眼”的照片和一段”活体检测”场景模拟,成功“攻破”人脸识别系统。 一般业内人士看到的是主持人手里所持人脸识别App的技术漏洞;但对于普通观众来说,他们看到的是一个不甚熟悉的高科技技术应用背后的“巨大风险”——人脸识别技术怎么会被破解?为什么一个换脸App软件就能轻松换脸?它会不会分分钟“掏空”我的账户……经由央视这个大众平台一放大,即使只是出于提醒消费
在智慧城市、平安城市大的发展潮流下,人们对于自己居住的环境要求也逐渐提升,不少消费者开始关注家庭级安防产品,一方面是应对用户日渐苛刻的需求,而另一方面也是减少人工支出成本,安防监控领域逐渐向智能化转变。当越来越多的地方普及监控设施,越来越多的地方普及高清监控,随之而来的就是海量数据信息及复杂的视频检索。如何在安防大数据中找到最核心信息,智能监控对大数据提出了更多挑战。 大数据对监控数据处理的价值 大数据在对安防数据处理价值上主要体现在以下几个方面: 一、数据应用效率不断提升。通过智能分析技术、
数据猿报道,人类对人工智能一直非常着迷,好莱坞给大众塑造了众多未来世界的场景,却也使人工智能被过度神化而给人一种可望不可及的距离感,事实上,人工智能已经悄然走进了我们的生活。4月22日,旷视科技(Fa
最重要的原因——说出来像是Black Lives Matter的影响——种族问题。
本次课程,分为三个部分,第一个部分是人脸识别概述,第二个部分是讲解人工神经网络,第三部分是人脸识别算法概述。
当前,全国两会正在进行时,最高人民法院办公厅主任郭竞坤就最高人民法院工作报告和最高人民检察院工作报告中提到的人脸识别技术被滥用等内容进行了解读。
目前谈论起人脸识别,已经不是什么高深莫测的东西了。很多人都用过,切切实实的走进了人们的生活中,也确实给很多人带来了便利。从火车站的身份证人脸对比,小区的人脸识别门禁,超市的人脸识别储物柜,再到家庭的人脸识别智能锁,手机上的人脸识别解锁,人脸识别支付,各种嵌入式上面的人脸识别逐渐走进人们的生活。不管是否承认,我们确实逐渐进入了一个人工智能越来越繁荣的时代。嵌入式的ai也吸引了一大批爱好者的积极跟进。本文结合这几年的国内嵌入式上人脸识别的发展,谈一谈我的一些想法和对未来发展的一些预测。
最近几年,“追星”已经成为常事,各种姐姐粉、妈妈粉、阿姨粉涵盖了全年龄层的人群。但是,小鲜肉太多让人分不清,怎么办?照片人太多找不到爱豆怎么办?其实明星撞脸,不一定是整容的原因,在我们刚开始追星的时候,一定会遇到一个问题:脸盲症!
<数据猿导读> 经过了将近60年的发展,互联网和大数据推动人工智能迎来了春天,语音识别、人脸识别、机器人、无人驾驶等人工智能技术均取得了突破性进展。虽然目前的技术水平还不能够做到让机器完全拥有人类的心
导读:在本文中,我们将会接触到一个既熟悉又陌生的概念——人脸识别。之所以熟悉,是因为人脸识别技术在我们日常生活中应用极其广泛,例如火车站刷脸验票进站、手机人脸解锁等;之所以陌生,是因为我们可能并不了解人脸识别的原理,不了解人脸识别的任务目标、发展历程与趋势。
AI 科技评论按:提到计算机视觉领域的研究,大家可能最先想到的是人脸识别,其实还有一个更为实用的研究应用——行人再识别。行人再识别是利用计算机视觉技术在图像或视频中检索特定行人的任务,面临着视角变化大、行人关节运动复杂等诸多困难,是一个极富挑战的课题。本文就来为大家重点介绍一下行人再识别的一些基础知识及最新研究进展。 2017年,行人再识别研究飞速进展。例如,在公开数据集Market-1501上,一选正确率从2016年ECCV中较高的65.9%提高到2017年ICCV中的80+%,arXiv近期一些pape
人脸识别是近两年计算机视觉领域创业热潮中的一个热门方向,DeepID是这股热潮中不可忽视的一种人脸算法。针对DeepID的研发心得,人脸识别应用的现状、难点与未来,深度学习的实践经验等问题,CSDN记者近日采访了DeepID人脸算法发明者孙祎。 孙祎先后就读于清华大学、中国香港中文大学,2013年在CVPR上发表了用深度学习做面部特征点检测最早的论文。随后陆续发表了四篇在人脸识别领域有影响力的论文(ICCV’13,CVPR’14,NIPS’14,CVPR’15),使深度学习方法的人脸识别准确率远远超过
人脸识别是近两年计算机视觉领域创业热潮中的一个热门方向,DeepID是这股热潮中不可忽视的一种人脸算法。针对DeepID的研发心得,人脸识别应用的现状、难点与未来,深度学习的实践经验等问题,CSDN记者近日采访了DeepID人脸算法发明者孙祎。 孙祎先后就读于清华大学、香港中文大学,2013年在CVPR上发表了用深度学习做面部特征点检测最早的论文。随后陆续发表了四篇在人脸识别领域有影响力的论文(ICCV’13,CVPR’14,NIPS’14,CVPR’15),使深度学习方法的人脸识别准确率远远超过了人眼的准
起步阶段(1950s-1980s),这一阶段的人脸识别只是作为一般性的模式识别问题来研究,所采用的技术方案也是基于人脸几何结构特征的方法。
我们知道人脸识别在这几年应用相当广泛,人脸考勤,人脸社交,人脸支付,哪里都有这黑科技的影响,特别这几年机器学习流行,使得人脸识别在应用和准确率更是达到了一个较高的水准。
近年来随着生物特征识别技术在日常生活中的应用推广,异质人脸识别受到了广泛的关注。然而,由于异质人脸之间巨大的域差异以及配对异质数据的不足,异质人脸识别任务面临着巨大的挑战。生成对抗网络的发展为异质人脸识别提供了新的解决思路,传统方法通常利用生成对抗网络将近红外图像转换为可见光图像,用以较小域差异。然而这种基于图像到图像转换的方法仍然面临着一些亟待解决的问题。在本次分享会上我们:
论文标题:Unknown Identity Rejection Loss: Utilizing Unlabeled Data for Face Recognition
云端人脸识别平台方案虽然看起来美好,但是当没有网络的时候呢?当需要控制硬件成本的时候呢?离线则成为人工智能技术落地的关键,这也是将AI从云到端的唯一方式。 当GMIC遇上视觉AI “黑科技”酷炫又好玩
领取专属 10元无门槛券
手把手带您无忧上云