作者 | 东田应子 编辑 | 磐石 出品 | 磐创AI技术团队 【磐创AI导读】本文是深度学习之视频人脸识别系列的第一篇文章,介绍了人脸识别领域的一些基本概念,分析了深度学习在人脸识别的基本流程,并总结了近年来科研领域的研究进展,最后分析了静态数据与视频动态数据在人脸识别技术上的差异。欢迎大家点击上方篮子关注我们的公众号:磐创AI。 一、基本概念 1. 人脸识别(face identification) 人脸识别是1对n的比对,给定一张人脸图片,如何在n张人脸图片中找到同一张人脸图片,相对于一个分类问题,将
人脸识别,一种基于人的脸部特征信息进行身份认证的生物特征识别技术。近年来,随着欧美发达国家人脸识别技术开始进入实用阶段后,人脸识别迅速成为近年来全球的一个市场热点。人脸识别技术经常听,但你知道它是如何实现的吗? 人脸识别技术包含三个部分: 人脸检测 面貌检测是指在动态的场景与复杂的背景中判断是否存在面像,并分离出这种面像。一般有下列几种方法: 1、考模板法。首先设计一个或数个标准人脸的模板,然后计算测试采集的样品与标准模板之间的匹配程度,并通过阈值来判断是否存在人脸。 2、人脸规则法。由于人脸具有一定的
近日,江苏卫视《最强大脑》第四季人机大战第三场已经结束。从未失算的“水哥”王昱珩,在图像识别方面与搭载百度大脑的小度机器人进行实力交锋。最终,“小度”以2:0的战绩战胜对手,并以3:1的总战绩,斩获2017年度脑王巅峰对决的晋级资格。 本场竞赛题目为 “核桃计划”:通过三段在夜幕下分别从行车记录仪、高位摄像头和女生手机中拍到的模糊动态影像中,让“小度“和水哥识别三位“嫌疑人”的特征后,从30位性别相同、身高体重年龄均相似的候选人现场拍照中,准确找出三位“嫌疑人”。 比赛虽已结束,但对于相关人工智能识别技术的
早在去年10月份,我国就已开通全国65家知名景区的人脸识别入园机制。在景区峰值人流压力下,一秒快进的方式拯救了景点“大排长龙”的窘态,全面提升景区安全管理、服务管理水准,为旅行者带去便利。
为全面分析人脸识别市场现状、面临的风险隐患及有效的安全保障措施,顶象近日发布《人脸识别安全白皮书》。该白皮书重点对人脸识别组成以及人脸识别安全面临的阿全风险进行了详细介绍与分析。
在周二的一篇博客文章中,Facebook社交网络的新母公司Meta宣布,该平台将删除超过10亿人的人脸模板,并关闭其人脸识别软件,这种软件使用一种算法来识别上传到Facebook的照片中的人。
李凯周,天津大学计算机科学与技术专业硕士。现担任中科视拓研发部产品总监兼研发总监,负责研发算法部署、SDK化和数据分析管理工作,主导SeetaFace2的算法发布。
现如今,人脸识别技术的应用可谓是非常广泛,被应用于身份认证,监控,安全检查,机器学习,面部表情识别,虚拟现实及虚拟导航等领域。
这项专利会通过人脸识别系统来自动认证和解锁设备,并且可以跟踪脸部位置,自动地将笔记本屏幕调整至舒适的角度。 自从苹果发布带有人脸识别功能的iPhone X,人脸识别技术也进入大众视线,成为热门话题。其实人脸识别技术很早进入商用研究,只是由于技术限制,落地产品很少。 近日Patently Mobile披露了一项谷歌的专利“内置电机的笔记本电脑屏幕位置调整”。专利描述了应用电动马达机制来自动调整笔记本设备屏幕开合角度和位置,只需轻触就可以让Pixelbook笔记本的屏幕自动打开。 这项专利还会通过人脸识别系统来
人脸检测和识别是计算机视觉中的一个重要应用领域,它可以识别人脸的位置、姿态、表情等信息,并对这些信息进行分类和识别。在实际应用中,人脸检测和识别被广泛应用于安防监控、人机交互、图像搜索、广告投放等领域。
摘要:本文主要从静态人脸识别局限性的提出,对动态人脸识别技术进行了探讨,介绍其研究背景,工作原理,结果分析,给出了在生活领域中的应用情况,并分析了存在的难题,发展趋势以及在人工智能化潮中的重要作用。
【新智元导读】 将模糊图像变高清的技术很受关注,不过同样应用范围很广的视频自动打码技术似乎比较低调。微软研究院最新提出一套基于人工智能算法的视频人脸模糊解决方案,该技术包含人脸的检测、跟踪、识别三类算法,能够实现对视频进行自动人脸模糊。该系统已经搭载于微软Azure云平台上作为一项云服务提供。 新闻无处不在。从电视里的《新闻联播》、《新闻30分》,到手机中的《今日头条》、《腾讯新闻》,随着互联网的不断发展,新闻报道的数量,以及报道中的视频数量,都在不断增加。 这对读者来说也许是好事,意味着有更多、更丰富的内
人脸识别在我们的生活中随处可见,例如在大楼门禁系统中,它取代了传统的门禁卡或密码,提高了进出的便捷性和安全性。在商场安保方面,人脸识别被广泛应用于监控系统,有助于识别和跟踪潜在的犯罪嫌疑人或失踪人员,提升了安全防范的能力。另外,手机解锁也是人脸识别技术的重要应用之一,它为用户提供了一种快捷、便利的身份验证方式,替代了传统的密码或指纹识别。
云端人脸识别平台方案虽然看起来美好,但是当没有网络的时候呢?当需要控制硬件成本的时候呢?离线则成为人工智能技术落地的关键,这也是将AI从云到端的唯一方式。 当GMIC遇上视觉AI “黑科技”酷炫又好玩
近日,来自中科院计算所的人工智能国家队中科视拓宣布,开源商用级SeetaFace2人脸识别算法。
大家好,又见面了,我是你们的朋友全栈君。 1.技术体系 1.1技术体系整理 其中绿色底色的代表Demo中表现出的能力比较成熟,可以直接应用。 脑图地址: http://naotu.bai
人脸识别,是基于人的脸部特征信息,进行身份识别的一种生物识别技术,主要用摄像机或摄像头采集含有人脸的图像或视频流,并自动在图像中检测和跟踪人脸,进而对检测到的人脸进行脸部的一系列相关技术。
Robert Lorenz(德国籍),澎思科技资深算法研究员,德国柏林洪堡大学数学系博士,致力于人脸检测、人脸跟踪和人脸质量判断等领域的技术研发,尤其擅长模型构建和模型优化。其研究成果已经应用于澎思科技多种人脸识别软件平台和硬件产品中。同时也致力于视频结构化算法的研究和开发,负责数个子研究课题的攻坚工作。
一个成熟的人脸识别系统通常由人脸检测、人脸最优照片选取、人脸对齐、特征提取、特征比对几个模块组成。
人脸关键点:也称为人脸关键点检测、定位或人脸对齐,根据人脸图像定位出人脸面部的关键区域(嘴巴、鼻子、眼睛、耳朵、脸部轮廓等等),其中根据72个关键点描述五官的位置来进行人脸跟踪。
该文内容较老,但对入门者还是有很强的学习意义,可以了解人脸识别的历程与技术发展。 人脸检测/跟踪 人脸检测/跟踪的目的是在图像/视频中找到各个人脸所在的位置和大小;对于跟踪而言,还需要确定帧间不同人脸间的对应关系。 1.Robust Real-time Object Detection. Paul Viola, Michael Jones. IJCV 2004. 入选理由: Viola的人脸检测工作使得人脸检测真正变得实时可用。他们发表了一系列文章,这篇是引用率最高的一篇。 2.Fast rotatio
随着近几年人工智能的快速发展,深度学习方法及性能日益提升,计算机视觉、图像处理、视频结构化和大数据分析等技术也不断完善,使得安防产品逐步走向智能化。在技术成熟度上,处理安防影像的技术已经研发得较为完备,同时行业指导性政策也进一步加快了人工智能技术的落地应用。
论文解读: Quantized Convolutional Neural Networks for Mobile Devices
智能时代已悄然到来,"刷脸"逐渐成为了新的风潮。在人脸识别技术商业化应用领域不断扩张的趋势下,"刷脸"办事正愈发常见。人脸识别,是基于人的脸部特征信息进行身份识别的一种生物识别技术。用摄像机或摄像头采集含有人脸的图像或视频流,并自动在图像中检测和跟踪人脸,进而对检测到的人脸进行脸部识别的一系列相关技术,通常也叫做人像识别、面部识别。
大数据文摘记者谭婧、魏子敏 安防已经成为人工智能落地场景中的重要赛道,其涉及的智能视频分析、人脸识别等关键技术也在研究领域受到了极大的关注。那么安防领域中涉及的人脸识别有何痛点?人工智能+安防的未来又有哪些新的趋势? 10月29日,2017年第十六届中国国际公共安全博览会(CPSE安博会)在中国深圳会展中心开幕。在政府管理论坛上,清华大学媒体大数据认知计算研究中心主任王生进教授发表了题为《人像态势识别及其在智能视频监控中的应用》的演讲,他指出,目前我国视频监控建设卓有成效,摄像头的数量惊人,达到了2000多
【新智元导读】亚马逊积极向美国警方推销自己的人脸识别产品, 引发了美国社会大规模抗议。亚马逊员工也给CEO贝佐斯写公开信:请停止武器化我们的技术!
如果你现在正在阅读这篇文章,那么你可能已经阅读了我的介绍文章(JS使用者福音:在浏览器中运行人脸识别)或者之前使用过face-api.js。如果你还没有听说过face-api.js,我建议你先阅读介绍文章再回来阅读本文。
本文是《人脸识别完整项目实战》系列博文第1章《目录大纲篇》,本章内容系统介绍,《人脸识别项目完整实战》系列博文的目录结构,共8大部分53个章节。
中兴视觉大数据报道:从人脸识别技术在智能安防下的一个具体应用场景开始:你在门口安装了摄像头,当有物体出现在摄像头范围内的时候,摄像头自动拍摄下图像,对图像进行识别;识别后如果发现是个人,并且长时间在门外并没有敲门进门等行为之后,就会及时报警给户主;或者,在夜晚的时候发现有物体移动,对物体进行识别,如果是可疑的物体就主动报警。人脸识别技术在安防领域已经有了很大的应用,未来将有更广阔的应用空间,因此对安防企业来说,人脸识别技术的市场潜力无可估量。
【新智元导读】人工智能对社会的渗透远比你能看到的更多。在具体的AI应用中,人脸识别是最广泛的几大技术之一,不管是执法、广告、管理甚至教堂,人脸识别都在发挥作用。在人脸识别领域,最新的技术甚至做到了“无脸识别”,也就是说,在图像模糊和变形的情况下,机器也可以根据此前学习到的模型正确识别出人脸。《经济学人》副主编Tom Standageis撰文指出,现在的人脸识别为AI技术的负面效应提供了一个例子。由AI引发的伦理和监管窘境并非是理论上的:它们已经发生了,就在你的智能手机里。 人脸识别的最新进展:无脸识别 根据
笔者是从传统图像算法开始进入计算机视觉行业的,那一批人基本上都是从人脸图像和文本图像开始学,而如今很多计算机视觉从业者却从来没有接触过人脸图像相关的算法,或许真的是时代变了吧。
之前的人脸识别考勤系统,已经依靠face++和opencv基本完成了功能初步测试。最后调试下的情况是:
之前的文章中,我们写过关于《Java 实现 AI人工智能技术 - 人脸识别》的文章,并且附带了源码(老版本:基于Spring、jdbc、jsp、json、https、mysql、tocmat等实现),有兴趣的同学,可以点击阅读。
人脸识别作为一项成熟的生物识别技术,目前已广泛应用于金融、公安、社会服务、电子商务等领域。然而人脸很容易用视频或照片等进行复制,人脸活体检测是人脸识别能否有效应用的前提,目前对活体检测方法的研究有很多。大多数活体检测方法是研究性质的,它们大多基于特征提取与训练的方式,这类方法的准确性是不可控的。另一类方法是要求用户做转头、摇头、眨眼或者张嘴等动作,但是这类方法对于视频的防欺骗性不高。
当我们在谈论AI的时候,不可避免的会遇到数据隐私的问题,如今这个问题已经延伸到人脸识别领域。近日,荷兰安全研究人员Victor Gevers在推特上曝光一条消息,表示中国一家面部识别公司SenseNet存在数据泄露问题,任何人都可以访问其人脸跟踪数据的记录。
随着以深度学习为代表的人工智能技术的成熟,国内众多行业都在利用人工智能推进行业变革与创新,积极探寻有效、有价值的应用场景进行商业化落地,其中尤以安防行业表现最为活跃。
以上就是完成人脸识别所需的步骤,如果你想在这个基础上,做人脸比对或者身份证校验等拓展功能,可以借助用户的身份证、姓名等信息,再结合第三方的AI服务,比如腾讯云的人脸核身来完成,本质上底层数据支持来自公安的实名认证接口
人脸识别(Face Recognition)是一种依据人的面部特征(如统计或几何特征等),自动进行身份识别的一种生物识别技术,又称为面像识别、人像识别、相貌识别、面孔识别、面部识别等。通常我们所说的人脸识别是基于光学人脸图像的身份识别与验证的简称。
--- 拔出你心中最困惑的刺!--- 在这个用过即弃的时代,不要让你的求知欲过期。 今日拔刺: 1、人工智能抢饭碗,未来怎么养活家庭? 2、人脸识别的发展水平? 3、最近区块链满天飞,个人信息泄露严重
中兴智能视觉大数据报道:人脸识别,是基于人的脸部特征信息进行身份识别的一种生物识别技术。用摄像机或摄像头采集含有人脸的图像或视频流,并自动在图像中检测和跟踪人脸,进而对检测到的人脸进行脸部的一系列相关技术,通常也叫做人像识别、面部识别。人脸识别的应用集成了人工智能、机器识别、机器学习、模型理论、专家系统、视频图像处理等多种专业技术,同时结合中间值处理的理论与实现,是生物特征识别的最新应用,其核心技术的实现,展现了弱人工智能向强人工智能的转化。人脸识别在国内广为人知始于近几年,其实早在20世纪90年代人脸识别就已在美国、德国、日本等国家应用,作为新兴技术,人脸识别搭载“高科技”标签,广为产品厂商和用户喜爱。
what?你没有看错,强大的JavaScript也可以实现人脸识别功能。小编精心整理了一个人脸识别的JavaScript库(tracking.js),通过这篇文章,你可以了解到如何在网页中实现一个人脸识别功能。 tracking.js
去年,马云爸爸的支付宝开启了一个“刷脸”登陆功能,本月初,微信也搞了一个“至尊宝能量继承者”活动,要求用户进行人脸认证以加强对于QQ账号的保护……类似此种的“安防”情景还有许多。 从以上来看,我们可以知道,基于人们对于安全性的进一步高要求,安防领域正在经受一场由“人脸识别”技术所领导的变革。 人脸识别+安防前景广阔 据了解,人脸识别是基于人的脸部特征信息进行身份识别的一种生物识别技术。用摄像机或摄像头采集含有人脸的图像或视频流,并自动在图像中检测和跟踪人脸,进而将检测到的人脸与库中数据进行对比、识别等一系列
人脸识别[1]是指计算机通过基于个人的面部轮廓比较和分析模式,唯一地识别或验证人的生物测定技术。作为生物特征识别领域中一种基于生理特征的识别,人脸识别技术具以下优越性:第一、不需要人工操作,是一种非接触的识别技术;第二、快速、简便;第三、直观、准确可靠;第四、性价比高,可扩展性良好;第五、可跟踪性好;第六、具有自学习功能。
近日,顶象发布《人脸识别安全白皮书》。该白皮书共有8章73节,系统对人脸识别的组成、人脸识别的内在缺陷、人脸识别的潜在安全隐患、人脸识别威胁产生的原因、人脸识别安全保障思路、人脸识别安全解决方案、国家对人脸识别威胁的治理等进行了详细介绍及重点分析。
【新智元导读】腾讯优图是腾讯AI的三大核心支柱之一,与微信AI团队和新成立的腾讯AI Lab共同驱动腾讯的 AI 发展。本年度人脸识别标志性比赛:LFW 和 MegaFace上,优图都拿到了冠军的成绩。当下,计算机视觉(CV)发展逐渐进入成熟期,业界也传出“刷分无用论”,那么腾讯优图如何看待“刷分”现象?依托腾讯强大的资源和数据平台,优图在创新和应用上有哪些优势?优图目前的技术储备都有哪些?近日新智元专访了腾讯优图团队,试图解答以上问题。 连拿两项人脸识别国际冠军,刷分只是检验技术落地成果副产品 2017
https://github.com/seetafaceengine/SeetaFace2
领取专属 10元无门槛券
手把手带您无忧上云