首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Android人脸识别之识别人脸特征

本文我们接着来看看,在完成了人脸注册之后我们该如何识别出用户的人脸特征,从而通过人脸识别获取用户信息。...data, int width, int height, int format, long timestamp) { //获取摄像头的帧数据,该数据为NV21格式 byte数组 //调用FT人脸追踪引擎的人脸特征查明方法...流程是这样的 提取图片中的人脸 → 与我们已经注册过得特征集合进行特征匹配 → 匹配程度最高的作为最终识别结果 这一过程是放在一个子线程中运行的,代码如下: //人脸识别线程 class FRAbsLoop...AFR_FSDKFace result = new AFR_FSDKFace(); //人脸特征 //全部已经保存的人脸特征集合 List...在获得这个信息后,我们调用FR人脸识别引擎识别出特征值信息,然后使用AFR_FSDK_FacePairMatching特征值匹配方法,一一的与我们程序中原来存储的人脸特征进行匹配,取出其中匹配值最高的那组特征

18.9K30

人脸识别的原理——Haar 特征

OpenCV 中提供了关于人脸识别的算法,它主要使用 Haar 级联的概念。...1.Haar 特征 人脸识别使用 Haar 级联分类器,通过对比分析相邻图像区域来判断给定图像或子图像与 已知对象是否匹配。...Haar 特征分为 4 种类型:边缘特征、线性特征、中心特征和对角线特征。将这些特征组合成特征模板,特征模板内有白色和黑色两种矩形,并定义该模板的特征值为白 色矩形像素之和减去黑色矩形像素之和。...Lienhart R.等人对 Haar-like 矩形特征库做了进一步 扩展,扩展后的特征大致分为 4 种类型——边缘特征、线性特征、圆心环绕特征和特定方向 特征,如图 1所示。...这些计算是重复的,因为遍历图 像时反复遍历了同一个像素点,而这会导致系统运行速度缓慢且效率低下,并且这对构建一个 实时的人脸识别系统来说是不可行的,因为卡顿会造成用户体验不好的情况。

4.9K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    人脸识别还敢闯红灯?人工智能智慧城市

    对闯红灯行为现场抓拍 不过随着人脸识别技术的发展,这个管理难点有可能被攻破。最近,广东、山东、江苏一些城市开始在交通路口,启用人脸识别系统,对行人和非机动车闯红灯进行抓拍,并且现场曝光。...在宿迁市中心的世纪大道和洪泽湖路交叉口,屏上正滚动播放着最近一段时间这个路口市民闯红灯的现场图片。...宿迁公安局交警支队副支队长夏建设:屏上的显示大家都能看到,有的人在闯红灯以后会主动打我们交管部门的电话,情愿接受处罚,保证下次不再闯红灯了,让我们把他的照片撤掉。...宿迁公安局交警支队副支队长 夏建设 10个路口装人脸识别 准确率超90% 而对于行人和非机动车闯红灯的行为,交管部门将分别给予20元和50元的罚款。...目前,宿迁已在10个路口安装人脸识别系统,曝光了580人次的行人和非机动车闯红灯行为,人脸识别准确率超过90%。 人脸识别准确率超90% ?

    1.2K00

    人脸识别系列一 | 特征脸法

    然后人脸识别的时候需要判断一张图像是不是人脸,opencv可以使用Harr特征的分类器或者LBP特征的分类器,我们这里使用Harr特征人脸级联分类器,对应的xml格式的模型文件可以在opencv项目中找到...就调用特征脸法开始拟合数据,然后人脸识别并打印到摄像头窗口上即可。...安装下就好了,安装命令如下: pip3 install opencv-contrib-python 结果 给自己人脸打了马赛克。 ? 特征脸法原理 还记得我们前面讲的机器学习算法之PCA降维吗?...计算协方差矩阵的特征值和特征向量,每一个特征向量的维度与原始图像向量的维度是一致的,因此这些特征向量可以看成是一致的,因此这些特征向量就是所谓的特征脸。...np.argsort(eigVals) eigValInd = eigValInd[::-1] eigValInd = eigValInd[:dimNum] # 取出指定个数的前n特征

    1.5K40

    详解LBP特征与应用(人脸识别)

    当时主要是介绍了一下局部二值模式的概念与其简单的尺度空间扩展,本文是上一篇文章基础上对局部二值模式的深化,涉及到局部二值模式的不变性介绍,包括光照不变性、尺度不变性与旋转不变性,只有具备了这些特性,局部二值模式得到特征数据才有可能用来做对象识别与检测...一:光照不变性 特征对整体光照具有特征不变性,对比度可以保持,LBP特征可以很好的应对整体光照干扰和局部微弱的干扰,但是当局部光线变化较大时LBP会严重失真。 ? 其中C表示对比度。...其本质是基于旋转不变性特征和降维,将LBP的直方图表示从256降到59个BIN即可表示。统一模式的58个LBP表示如下(其中R=1,圆形) ?...而在纹理匹配中,通过傅里叶变换到频域空间,可以得到旋转不变性特征,实现基于LBP的纹理匹配。 四:应用 OpenCV中已经实现了基于LBP特征人脸检测与识别,运行结果如下图所示: ?...OpenCV中使用LBP特征数据检测人脸比使用Haaris数据要快,原因在于LBP特征不会产生小数数据,避免了浮点数计算开销。

    2.8K91

    人脸检测的关键特征

    今天跟大家继续说说人脸检测的一些事,我们是否考虑过人脸检测,到底哪些特征是比较关键性的??? ? 面部传达着非常丰富的信息,这对于完整的社会互动至关重要。...为了有效地提取这些信息,需要从复杂的视觉场景中很容易地检测到人脸。在这里,我们询问了哪些特征人脸检测的关键?...这些发现表明,人脸检测取决于特定的面部特征、眼睛和嘴巴。这种最小的信息导致过度泛化,产生虚假的人脸感知,但确保真实的面孔不会错过。 ?...通过将特征等级与人脸等级相关联,发现哪些特征需要作为面部刺激,哪些不是关键。...为了进一步检查眼睛和嘴巴是否确实对于面部检测是关键的,在第二实验中,我们去除眼睛或嘴巴,或者两个不与面部、耳朵或牙齿相关的特征,以及用于编辑的图像的测量的真实性得分。

    1.1K10

    618技术揭秘:弹窗搭投实践

    Tech 导读 弹窗作为非常重要的营销触达手段被各业务广泛应用,本文主要介绍 “XView 营销弹窗搭投系统” 关于快速搭建、投放配置营销弹窗能力的实现原理,以及在 618 等重要场景中的应用和实践...618 来了,对于业务团队来说,最重要的事情莫过于各种营销。如会场、直播带货、频道内营销等等。...而弹窗作为一个极其重要的强触达营销工具,通常用来渲染氛围、引流主会场、以及通过频道活动来提升频道复访等。...通过以上分类的梳理,从业务视角来看,功能性的弹窗在中的重要性是其次的,而主要是营销类的弹窗,它们往往具备以下特点: 突发创意/需求:偶然的创意玩法,或突发的外部业务需求,时效性要求高,即上线时间不可逾期...3.2 能力细化抽象 为了满足以上业务的诉求,从的方向上看,XView 需要做到 快:快速搭建 准:精准投放 稳:高效触达 因此,接下来我们将刨析一个弹窗从生产到应用的过程中所涉及到的一些环节,再来看看如何细化弹窗需要具备的能力

    31320

    判别特征学习方法用于人脸识别

    为了增强深度学习特征的判别力,提出一种新的监督信号,称为中心损失,用于人脸识别任务。中心损失同时学习每一类深度特征的中心,并惩罚深度特征和它们相对应类别中心之间的距离。...以这种方式,标签预测(最后全连接层)像一个线性分类器,并且深度学习的特征很容易被分离。 但是对于人脸识别任务,深度学习特征不仅需要可分离还需要判别性。...然而,softmax损失只支持特征的分离,由此产生的特征是不够有效地人脸识别。 本文提出一个新的损失函数,称为中心损失,有效地增强了深度学习特征的判别力。...图3显示了不同的λ导致不同的深度特征分布。适当的λ,深度特征的分类能力得到显著增强。 ü 讨论 1) 联合监督的必要性 如果只使用softmax损失作为监控信号,导致深度学习特征将包含的类内变化。...通过结合中心损失和softmax损失去联合监督CNNs的学习,深度学习特征的判别力可以被很大的增强用于鲁棒的人脸识别。大量的实验在一些大规模的人脸基准进行,并证明了所提方法的有效性。

    1.3K30

    判别特征学习方法用于人脸识别

    为了增强深度学习特征的判别力,提出一种新的监督信号,称为中心损失,用于人脸识别任务。中心损失同时学习每一类深度特征的中心,并惩罚深度特征和它们相对应类别中心之间的距离。...以这种方式,标签预测(最后全连接层)像一个线性分类器,并且深度学习的特征很容易被分离。 但是对于人脸识别任务,深度学习特征不仅需要可分离还需要判别性。...然而,softmax损失只支持特征的分离,由此产生的特征是不够有效地人脸识别。 本文提出一个新的损失函数,称为中心损失,有效地增强了深度学习特征的判别力。...ü 讨论 1) 联合监督的必要性 如果只使用softmax损失作为监控信号,导致深度学习特征将包含的类内变化。...通过结合中心损失和softmax损失去联合监督CNNs的学习,深度学习特征的判别力可以被很大的增强用于鲁棒的人脸识别。大量的实验在一些大规模的人脸基准进行,并证明了所提方法的有效性。

    74850

    人脸识别经典算法:特征脸方法(Eigenface)

    特征脸方法基本是将人脸识别推向真正可用的第一种方法,了解一下还是很有必要的。特征脸用到的理论基础PCA在之前的文章中已经讲过了。直接上特征脸方法的步骤: 步骤一:获取包含M张人脸图像的集合S。...一旦我们找到了L矩阵的M个特征向量vl,那么协方差矩阵的特征向量ul就可以表示为: ? 这些特征向量如果还原成像素排列的话,其实还蛮像人脸的,所以称之为特征脸(如下图)。...步骤五:识别人脸。OK,终于到这步了,别绕晕啦,上面几步是为了对人脸进行降维找到表征人脸的合适向量的。首先考虑一张新的人脸,我们可以用特征脸对其进行标示: ?...其中k=1,2...M,对于第k个特征脸uk,上式可以计算其对应的权重,M个权重可以构成一个向量: ? perfect,这就是求得的特征脸对人脸的表示了! 那如何对人脸进行识别呢,看下式: ?...其中Ω代表要判别的人脸,Ωk代表训练集内的某个人脸,两者都是通过特征脸的权重来表示的。式子是对两者求欧式距离,当距离小于阈值时说明要判别的脸和训练集内的第k个脸是同一个人的。

    4.9K50

    人脸神经辐射场的掩码编辑方法NeRFFaceEditing,不会三维建模也能编辑立体人脸

    三维人脸编辑方法 NeRFFaceEditing 提供了新的解决方案,即使不会三维建模,也能自由编辑高真实感的立体人脸,建模元宇宙中的个性化数字肖像!...DeepFaceVideoEditing [7] 则将线稿编辑应用到人脸视频,能在时序上生成丰富的编辑效果。 但是,图像的解耦与编辑方法,很难直接应用至三维空间。...而几何特征与材质特征 (a) 通过可控制的材质模块(CAM)模块组合后,再从中采样特征输入材质解码器预测颜色。最后通过体渲染,得到某一视角下的人脸图像与对应的语义掩码。...而在给定一个不同的材质特征 (b) 的情况下,几何特征与材质特征 (b) 通过 CAM 模块和体渲染可以得到另一张几何不变而材质改变的人脸图像。...如下图所示: 图 5 材质相似约束训练策略 Part 3 效果展示与实验对比 使用 NeRFFaceEditing,可以借助二维的语义掩码对三维人脸空间进行几何编辑: 图 6 三维人脸几何编辑 除此之外

    91330

    基于haar特征+adboost分类器的人脸检测算法----haar特征

    haar特征 1 人脸识别方法 人脸检测由来已久 ,它属于计算机视觉范畴。...在早期的人脸检测研究中主要侧重于人脸的识别和人物身份的鉴定,后来在复杂背景下的人脸检测需求越来越大,人脸检测也逐渐作为一个单独的研究方向发展起来。...目前人脸检测的方法主要有两大类:基于知识和基于统计。 基于知识的方法:主要利用先验知识将人脸看作器官特征的组合,根据眼睛、眉毛、嘴巴、鼻子等器官的特征以及相互之间的几何位置关系来检测人脸。...主要包括模板匹配、人脸特征、形状与边缘、纹理特性、颜色特征等方法。...基于统计的方法:将人脸看作一个整体的模式——二维像素矩阵,从统计的观点通过大量人脸图像样本构造人脸模式空间,根据相似度量来判断人脸是否存在。

    3.7K32

    电商GMV和支付规模预测

    在电商时,为了能够合理地制定KPI、高效地商品备货和营销资源的安排,都通常都需要对这次大的GMV和订单规模做预测,避免出现诸如产品断货或者过剩、人员效率不高等问题,导致客户流失未能成交。...在传统的预测中,通常是基于历史GMV趋势做预测的,衡量的是历史期相对平销期流失爆发度,计算公式是本次大GMV=前平销期GMV*爆发系数,其中,前平销期GMV可以通过时间序列模拟获得,而期间的爆发系数通常是基于业务经验做推断获得的...这样,预测的输出结果就明确了,首先是用户id,用于用户的分类,例如基于此,可以将用户分为A组、B组等;其次是不同分类用户的购买概率,例如A类、B类客户购买概率分布是多少;最后是的购买金额。...接下来,为了得到最终的结果,需要确定模型和对应的特征工程。这里,特征工程的选择必须尽量丰富,例如可以包括年龄、性别、优惠敏感度、近14天访问次数、近14天加购次数、近30天是否支付以及会员等级等。...确定了目标、特征和模型后,接下来就需要收集用到的数据,比如日志、数据库等;同事需要对收集到的数据做好清洗,例如异常值、缺失值处理,数值类型转化、不同量纲数据的标准化等。

    6.3K40

    电商,性能测试都在做什么?

    电商期间剧增的流量,对电商平台相关的软件系统也带来了更严峻的挑战。 比如秒杀抢购活动要求高并发处理能力,核心业务流程要求更好的可用性以及稳定性,为了需要精确的对线上服务扩容做容量规划等等。...这篇博客,来聊聊电商期间,性能测试工程师都在做哪些事情。。。 PS:由于某些原因,这篇博客延期了将近一个月才发布,不过即将为双十一做准备,到时候会更一篇更详细的博客来说明具体的细节。。。...由于时间紧任务重,为了保证在期间系统能稳定运行,需要梳理出核心的业务。如下图: ?...②、除了核心业务流程,还有时会有一些抢购秒杀抽奖等活动,这类型的业务一般具有短时间内流量剧增,商品优惠券数量有限下的超卖现象,因此需要考虑高并发和超卖问题。...对于我司来说,第一次大力度的,只能通过高峰流量来进行倍增预估,然后做好随时扩容的准备。 4、渠道引流转化量 鉴于业务特性以及商务合作方面,有时候会有其他合作渠道的引流。

    4.3K11
    领券