首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    全套 | 人脸检测 & 人脸关键点检测 & 人脸卡通化

    人脸检测历险记 可能跟我一样,人脸检测是很多人学习图像处理的第一个自驱动型的任务,OpenCV刚上手没几天可能就想先跑一跑人脸检测,然后一个坑接着一个坑的往里跳。...上面用的是深度学习模型的人脸检测,但是在此之前还是稍微回顾下OpenCV自带的人脸检测器。...OpenCV自带的人脸检测 OpenCV自带了基于级联分类器的人脸检测模型,只能检测正脸,在前深度学习时代,效果已经是很好的了。...人脸卡通化 仅仅是人脸检测,显得略微有些没意思,所以在人脸检测的基础上,加点其他的更有意思的东西,比如上次刚玩过的卡通化。...,获取人脸框和人脸关键点的位置 稍微扩充下人脸框,进行卡通化操作 把卡通化后的人脸贴回原图中人脸的位置 完整效果 看一下完整的效果吧:【视频有声提示!】

    3.3K50

    Android 人脸识别之人脸注册

    该项目基于讯飞SDK实现的人脸检测,使用face++的webapi实现的人脸注册以及人脸识别。...所以在整个流程中应该包含以下几个步骤 人脸检测 (FD引擎) 即从摄像头预览中检测到人脸的存在,并且使用一个矩形框出人脸的范围。...人脸识别 (FR引擎) 当检测出人脸时,对人脸进行识别,如果人脸特征集合中存在该人脸信息,读取出该人脸信息及人员信息。...,检测图片中的人脸信息(人脸 Rect、角度),此处的 Rect 是图片中人脸位置的矩形。...第三步: 经过上述的两部,我们已经成功的从图片中识别到了人脸,并且将该人脸在图片中的位置获取到了,接下来我们要做的就是使用 FR 人脸识别引擎识别该位置人脸中的特征信息。 if (!

    24.7K30

    【深度学习】人脸检测与人脸识别

    基本概念 人脸是个人重要的生物特征,业界很早就对人脸图像处理技术进行了研究。人脸图像处理包括人脸检测、人脸识别、人脸检索等。...人脸检测是在输入图像中检测人脸的位置、大小;人脸识别是对人脸图像身份进行确认,人脸识别通常会先对人脸进行检测定位,再进行识别;人脸检索是根据输入的人脸图像,从图像库或视频库中检索包含该人脸的其它图像或视频...人脸检测与识别的应用 实名认证 人脸考勤 刷脸支付、刷脸检票 公共安全:罪犯抓捕、失踪人员寻找 3. 传统人脸检测与人脸识别方法 1)人脸检测 基于知识的人脸检测法。...它将典型的人脸形成规则库对人脸进行编码。通常, 通过面部特征之间的关系进行人脸定位。 基于模板匹配的人脸检测法。...该数据集包含有200K张人脸图片,人脸属性有40多种,主要用于人脸属性的识别。 5.

    10K30

    人脸专集3 | 人脸关键点检测

    对于人脸关键点检测和跟踪,有从传统方法向基于深度学习的方法转变的趋势。...近年来,卷积神经网络模型成为人脸关键点检测,主要是深度学习模型,并且大多采用全局直接回归或级联回归框架。这些方法大致可分为纯学习法和混合学习法。...纯学习方法直接预测人脸关键点位置,而混合学习方法则将深度学习方法与计算机视觉投影模型相结合进行预测。...Pure-learning methods 纯学习方法:这类方法使用强大的CNNs模型从人脸图像中直接预测关键点位置。...Las Vegas, NV (2016))建立了一个密集的三维人脸模型。然后,采用迭代级联回归框架和深度CNN模型对三维人脸形状系数和姿态参数进行更新。

    2.4K30

    搜索引擎

    它们都称之为搜索引擎。虽然听起来比较高大上。但实际上他们就是搜索数据用的。但站在数据方面考虑,实际上数据会分为两种:结构化数据和非结构化数据。 结构化数据:简单来说,就是有固定格式固定长度的的数据。...所以谷歌和百度搜索引擎的基本原理就是:网络机器人或者网络蜘蛛通过扫描网页中的内容,提取出相应的关键词,然后为提取出的关键词建⽴索引,并记录该关键词在文章中位置,当用户搜索时,如果命中该关键词,搜索引擎就根据按照之前的索引进查找...它提供了一个分布式多用户能力的全文搜索引擎,基于RESTful web接口。Elasticsearch也是用Java语言开发的。...那为什么还会出现类似Elasticsearch这样的搜索引擎技术呢?答案就像我上面介绍的那样。搜索引擎并不会将所有的数据全部按照结构化存储,而是按照相应的关键字存储。...所以,正是因为数据库有种种这样的原因,才会出现全文搜索引擎存在的必要。 ---- 下面我们介绍一下全文搜索引擎比较适合的应用场景都有哪些: 搜索数据比较大的非结构化数据。 支持文本数据量达百万级别。

    1.2K11

    人脸生成黑科技:实现人脸转变特效,让人脸自动戴墨镜

    上一节我们通过VAE网络完成了人脸生成效果。VAE网络一个特性是会把人脸编码成一个含有200个分量的向量,反过来说在特定分布范围内的含有200个分量的向量就对应一张人脸。...,该新向量就会对应一个人脸,而且这个人脸就会同时具有人脸A和B的特点,如果我们增大参数alpha,那么生成向量对应的人脸特征就会更像人脸B,如果我们减少alpha的值,生成向量对应的人脸就更像人脸A....接下来我们看看如何实现人脸的转变特效,首先我们先出数据图片中选出具有特定特征的人脸图片,例如”戴墨镜“,然后使用编码器得出”戴墨镜“人脸图片的特征向量,然后我们再选取不带墨镜的人脸图片,计算其特征向量,...处于最左和最右边的图像时我们输入的两张人脸图片,中间人脸是将一边人脸图片对应的向量滑向另一边时所产生的人脸,我们注意到中间人脸图片是左右两张人脸图片特征的混合。...回到deepfake或zao这样的变脸应用,他们的原理就是先将计算原来视频中人脸变化所对应的不同向量,然后计算用户的人脸向量,然后将用户人脸向量”滑向“视频中人脸当前表情对应向量从而实现用户人脸展现出视频中人脸的同样表情

    1.9K11

    人脸专集2 | 人脸关键点检测汇总

    今天应该是“计算机视觉战队”人脸专集的第2期,我们主要涉及目标检测与识别,主要在人脸领域做更多的详解。...接下来,我们针对人脸配准该领域详细讲解一次,今日主要涉及的就是人脸关键点检测,这个基础是人脸分析的基础,也是最重要的步骤之一。...对于人脸识别,二维图像上的关键点位置通常与三维头部模型相结合,以“正面化”人脸,并帮助减少显着的变化,以提高识别精度。...人脸关键点检测算法的目的是自动识别面部关键点在面部图像或视频中的位置。这些关键点要么是描述人脸部件的独特位置(例如眼角)的优势点,要么是将这些优势点与人脸部件和轮廓连接起来的插值点。...它是一种统计模型,用少量的系数拟合人脸图像,控制人脸的外观和形状的变化。在建模过程中,AAM建立了基于主成分分析(PCA)的全局人脸形状模型和整体人脸外观模型。

    2.5K10

    人脸图像识别(python人脸识别技术)

    python人脸识别 人脸识别的崛起 什么是人脸识别 人脸识别是将采集到的数据信息,根据人脸特征信息进行比对,从而辨识身份的技术。...常常在想人脸识别是如何做到,的这里面与复杂高级的数据建模,建立人脸各部分的数据模型密切相关。说白了,其实也就是算法,算法的研究,成为推动智能发展的顶梁柱。...不过肯定的一点是,你的人脸识别首先要将人脸转化为计算机可以识别的数据,人脸识别其实就是计算机方面的数据识别。...人脸识别技术的应用和发展 谈到应用,我的第一映像就是手机上的人脸识别解锁,目前在学校公寓里面也有人脸识别的机器,我记得首先是收集了我们学生们的照片,应该是存入数据库的,我们学生的信息,包括学号,以及所在系等等...我们可以有这个思路,这里只是给大家简单介绍一下python的这个人脸识别库。当然也会有其他的编程语言的实现人脸识别。 后期会写出动态拍照人脸识别。

    15.3K60

    人脸算法系列:MTCNN人脸检测详解

    人脸检测的概念 人脸检测是一种在多种应用中使用的计算机技术,可以识别数字图像中的人脸人脸检测还指人类在视觉场景中定位人脸的过程。 人脸检测可以视为目标检测的一种特殊情况。...MTCNN算法是一种基于深度学习的人脸检测和人脸对齐方法,它可以同时完成人脸检测和人脸对齐的任务,相比于传统的算法,它的性能更好,检测速度更快。...本文目的不是为了强调MTCNN模型的训练,而是如何使用MTCNN提取人脸区域和特征点,为后续例如人脸识别和人脸图片预处理做铺垫。...P-Net是一个人脸区域的候选网络,该网络的输入一个12x12x3的图像,通过3层的卷积之后,判断这个12x12的图像中是否存在人脸,并且给出人脸框的回归和人脸关键点。...P-Net输入的12×12的图像块可能并不是完美的人脸框的位置,如有的时候人脸并不正好为方形,有可能12×12的图像偏左或偏右,因此需要输出当前框位置相对完美的人脸框位置的偏移。

    2.4K10

    Android人脸识别之识别人脸特征

    作者:junerver 链接:https://www.jianshu.com/p/b41f64389c21 在Android 人脸识别之人脸注册这篇文章中我大致的介绍了官方 Demo 中人脸注册的流程,...本文我们接着来看看,在完成了人脸注册之后我们该如何识别出用户的人脸特征,从而通过人脸识别获取用户信息。...还是来了解几个概念 人脸追踪 FT 年龄检测 Age 性别检测 Gender 其中人脸追踪 FT 与人脸检测 FD 功能基本一致(甚至代码基本都是相同的),Age 引擎用于识别年龄,Gender 引擎用于识别性别...result.isEmpty()) { //追踪到人脸数据,取出当前追踪的人脸,取出当前帧的NV21数据(用于人脸识别) mAFT_FSDKFace =...result.isEmpty()) { //追踪到人脸数据,取出当前追踪的人脸,取出当前帧的NV21数据(用于人脸识别) mAFT_FSDKFace =

    18.9K30
    领券