首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

最强AI人脸技术:一张图像合成动图

引言 本文总结了来自三星莫斯科AI中心和Skolkovo科学技术研究所的研究人员提出的“Few-Shot Adversarial Learning of Realistic Neural Talking...这种复杂性不仅源于建模人脸(存在大量建模方法),还来自建模复杂的嘴巴、头发和服装。第二个复杂因素是人类视觉系统对人类头部外观建模中的微小错误的敏锐性。...为了克服这些挑战,现有的工作通过扭曲单个或多个静态帧来合成关节式头部序列。经典的扭曲算法[2,3]和使用机器学习(包括深度学习)[4,5,6]合成的扭曲场都可以实现目标。...近期的工作[7,8,9]使用经过对等训练的深度卷积网络(ConvNets)直接(无扭曲)合成视频帧。...鉴别器:负责整合和处理原视频帧、合成视频帧、对应的面部特征图和训练序列。它通过序列数,判断合成帧与参考帧是否吻合,以及与面部特征图是否匹配。根据匹配程度,网络计算真实性得分,显示出两者之间的差别。

4.8K20

Python+Dlib库实现人脸合成

如今,随着技术的不断进步,“变脸”技术不再是四川喜剧的“独门武功”。运用机器学习的方法,我们同样可以实现人脸“融合”。...当然这里说的人脸融合指的是将两个人的人脸照片进行融合,至于融合的比例,要按照自己的喜好来定。给小伙伴们展示效果如下图所示: ?...程序实现思路: 1、第一步实现人脸检测;要进行人脸的融合,且融合后两个人脸的位置应该大体一致,这要如何才能做到呢?首先便是人脸的检测,只有检测到了人脸,才能进行接下来的工作。...人脸的检测,采用的是Dlib函数库,帮助我们进行人脸的检测。...2、第二步人脸关键点检测;得到人脸的位置后,接下来就是对于人脸的关键点的定位,什么是关键点的定位呢,说的通俗一点,就是确定图片中人脸的关键特征的位置,比如眼睛,嘴巴,鼻子的位置,而这些关键点又被称为Landmark

79520
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    前端-纯前端实现人脸识别-提取-合成

    来源:雅X共赏  http://refined-x.com/2017/09/06/纯前端实现人脸识别-提取-合成/ 最近火爆朋友圈的军装照H5大家一定还记忆犹新,其原理是先提取出照片中的面部,然后与模板进行合成...,官方的合成处理据说由天天P图提供技术支持,后端合成后返回给前端展示,形式很新颖效果也非常好,整个流程涉及的人脸识别和图像合成两项核心技术在前端都有对应的解决方案,因此理论上前端也可以完成人脸识别-提取...然后就要说一下我们这个图像处理和人家天天P图的差距了,虽然我们得到了理想的色调,但要想把随便一张人脸与特定模板做合成,有两件事必不可少。...首先是面部角度矫正,如果模板是正的而你的照片是歪的,直接暴力拼接肯定很违和,所以需要先识别出面部角度,并纠正到指定角度;然后是面部中心定位,因为人脸识别的结果提取出来后不一定是以面部中心为中心的,所以在合成之前要识别出面部中心线...,但整个示例撸下来后对人脸识别和图片处理技术都有了基本的认识,对canvas操作中一些细节问题的解决也略微补足了一下这方面的知识空白,算略有收获吧。

    2K30

    语音合成技术_ai语音合成软件免费的

    语音合成技术原理 语音合成(text to speech),简称TTS。将文字转化为语音的一种技术,类似于人类的嘴巴,通过不同的音色说出想表达的内容。...将计算机自己产生的、或外部输入的文字信息转变为可以听得懂的、流利的汉语口语输出的技术。...(2)韵律建模 为合成语音规划出音段特征,如音高、音长和音强等,使合成语音能正确表达语意,听起来更加自然。...(3)语音合成(核心模块) 根据韵律建模的结果,把处理好的文本所对应的单字或短语的语音基元从语音合成库中提取,利用特定的语音合成技术对语音基元进行韵律特性的调整和修改,最终合成出符合要求的语音。...当然,这就涉及到分词的技术,要把复杂的句子断成合理的词序列。另外,为了追求更好的效果,还有进化到以常用句子为单位来录音了。当然,这就得需要更大的工作量了,因为你需要读单字、词、成语、句子等等。

    4.4K11

    Python人脸合成,秒变胡歌王俊凯

    如今,随着技术的不断进步,“变脸”技术不再是四川喜剧的“独门武功”。运用机器学习的方法,我们同样可以实现人脸“融合”。...由上面我们可以得到图片1中关键点的和图片2中关键点的集合,以及合成图片的关键点的集合。 我们也由delaunay算法得到了确定的三角形。...接下来我们选取图片1中的三角形和合成图中的三角形进行仿射变换,也就是将图片1中的三角形对应的映射到合成图片当中去,关于仿射变换,我们可以使用opencv中的getAffineTransform函数进行。...一共有4个按钮,分布是打开图片1,打开图片2,人脸融合和退出软件。 ? 中间有3张图片,前2张都是原始图片,最后一个合成图片,尤其是合成图片那里是关键中关键: ?...后台的算法会把两种图片利用cv2和dlib进行处理合成,然后生成一个新的合成图片 最后我们用PIL库把图片读出来,然后显示在界面上即可。

    1.5K10

    精选论文 | 人脸图像合成【附打包下载】

    关注文章公众号 回复"SFFAI29论文"获取本主题精选论文 论文推荐 最近,人脸图像合成技术越来越受到社会各界的关注。...人脸图像合成技术不仅可以实现“换脸”、“人脸编辑”等娱乐效果,而且能够有效提高人脸识别等技术的性能。今天,两位主讲嘉宾为大家精选了人脸图像合成中的几篇代表性的工作,和大家一起学习分享最新的研究进展。...1 推荐理由:本文提出了PGGAN模型,并首次成功合成了视觉效果极为逼真的超高分辨率人脸图像。PGGAN的核心思想在于逐级生成图像,在训练过程中合成图像分辨率不断提高。...在这之前的人脸年龄转换还只能实现局部人脸的转换,这篇文章首次实现了全脸的年龄转换,包括发际线的转换,极大推动了年龄生成的研究。...该方法在传统的基于图像的人脸老化基础上,加入了a) 时序信息(由于是视频生成),b)使用了强化学习搜索最近邻,来辅助人脸老化。 Figure 3. 视频人脸年龄转换效果图。第四行是该方法生成的结果。

    1.7K64

    人脸识别技术优缺点,人脸识别技术的原理

    现如今,在案件侦破,小区门禁,手机解锁等等方面,我们都需要用到人脸识别技术,这项技术应用到了很多的场景当中,对于日常的生活来说也提供了不少的便利,下面我们就将为大家介绍人脸识别技术。...,而且通过人脸识别技术,可以不易察觉,不会陷入被人伪装欺骗的地步。...虽然人脸识别技术的优点非常多,但是我们也需要注意到它的缺点,因为人类的脸部或多或少存在着一定的相似性,所以对于人脸的外形来说,它是很不稳定的,而且有些人脸识别技术还可能会导致信息的泄露。...二、人脸识别技术的原理 人脸识别是识别技术的一种,主要是通过人类的面部特征来进行身份确认,在判断出是否存在人脸之后,就会开始检测脸部的位置和大小,根据检测出来的信息,就可以提出身份特征,然后和已知的人脸之间进行对此...人脸识别技术在现在的社会中已经越来越普遍了,我们也日常的生活中随处可见人脸识别技术,有些小区也是可以通过人脸识别技术来确定身份,不过我们在进行人脸识别的过程,也要多加注意保护自己的信息。

    11.4K20

    人脸图像识别(python人脸识别技术

    python人脸识别 人脸识别的崛起 什么是人脸识别 人脸识别是将采集到的数据信息,根据人脸特征信息进行比对,从而辨识身份的技术。...每逢谈到人脸识别技术,就会想到人工智能,近年来,人工智能的发展成为当代技术革命的一部分。可以说计算机领域技术的发展,极大的带动了这场革命。...人脸识别技术的应用和发展 谈到应用,我的第一映像就是手机上的人脸识别解锁,目前在学校公寓里面也有人脸识别的机器,我记得首先是收集了我们学生们的照片,应该是存入数据库的,我们学生的信息,包括学号,以及所在系等等...目前,从我国人脸识别技术应用来看,主要集中在三大领域:考勤门禁、安防以及金融等等。人脸识别目前面临着一个难题是,对于明亮可能有点要求,像黑暗的环境就比较困难,还有面部本身黑色的人也可能会有误差。...应用前景:随着人工智能的兴起,更加高端的识别技术才是主流发展方向,无需接触、更加方便、直观的方式是未来方向,人脸识别具备无需被测者配合的特点,采集器扫过人脸就能进行对比,这在公安刑侦领域有着巨大的前景,

    15.3K60

    人脸分析:用合成数据来代替真实数据

    现在训练数据也用合成的了。 而且人脸分析任务上,准确性还不输真实数据的那种。 这是微软团队的一项最新研究,论文标题就已经说明了一切。 Fake it till you make it....文章介绍了一种程序生成的3D人脸模型与一个合成数据库结合起来训练图像,结果人脸解析等任务上,效果与真实数据相当。 研究人员表示,为一些不可能实现人工标注的地方,开辟了新方法。...因此,研究团队就考虑用合成数据来增加或替代真实数据。然鹅,此前因为人脸模型本身复杂实现难度较为困难。 那么这次是如何实现的呢?...此外,团队还训练了人脸解析网络(仅使用合成数据)和标签适应网络,以解决合成标签和人工注释标签之间的系统差异。 最终,人脸分析、地标定位等任务上的效果与其他采用真实数据的模型相当。...不过,研究人员也承认这项技术仍然有一定局限性。 比如人脸模型只有头部和颈部、无法模拟真实的皱纹、随机匹配人脸时会得到一些不合常理的面孔,比如有胡须的女性。

    65320

    人脸识别技术的真相

    人脸识别是机器学习的直接应用,这项技术已经被消费者、行业和执法机关广泛采用,它可能为我们的日常生活带来了便利,但也有严重的隐私问题。...其中,执法机关会使用这项技术从人群中识别出他们感兴趣的人。 人脸识别技术还可以用于推断人的特征和行为,如情绪、年龄或健康状况。...但是,人脸识别是一种不同于其他技术的生物识别工具。乔治敦隐私&技术法律中心执行董事、人脸识别专家Alvaro Bedoya在近日接受USA Today采访时说,“你可以删除cookies。...这项技术已经发展了好多年,在标准训练集上得分很高。不过,现实环境会带来一些特殊的挑战。例如,由于姿势的原因,一个人脸部的差别可能比不同人脸部的差别还要大。...当前,人脸识别面临的挑战包括实现不同姿势、不同年龄人脸变体识别的健壮性、使用“照片简图(photo-sketches)”代替真正的照片、处理低分辨率照片、识别遮挡、彩妆及欺骗技术

    1.8K10

    人脸识别技术概述

    摘要 随着人脸识别技术(FR,Facial Recognition)迅速普及,反人脸识别技术(AFR,Anti-Facial Recognition)作为对抗性研究变得越来越重要。...反识别技术能够在某些情况下帮助用户避免不必要的面部识别,同时也能够促进人脸识别技术的可用性和安全性。本文将对不同的反人脸识别技术进行全面分析。...0x02 人脸识别系统 A. 技术介绍 作为背景,本章将概述当今的人脸识别系统及其实际应用,包括系统的关键工作阶段和部署方式。...随着技术的不断进步,人脸数据收集方式也在不断演变,因此反识别工具需要不断更新和适应这些技术的变化。 (2)摄像头广泛部署使得躲避拍摄变得困难。...未来的反识别技术可以针对人脸识别的第一阶段和第 四阶段进行更多的探索,这可以提供更广泛的保护。 随着人脸识别系统的广泛应用和不断增长,反人脸识别技术的需求也将不断增加。

    63730

    智能门锁:人脸识别技术

    智能门锁在经过2018年的爆发直至近几年来的持续增长,目前市场上各类的产品基本都涵盖了密码、刷卡、指纹这几项关键的开门方式,人脸识别技术作为一种新的引用技术,成为众多厂家为追求产品差异化而形成的一种趋势...图片来源:https://www.sohu.com/a/501784145_161795 2D人脸识别技术 2D人脸识别技术早在安防、监控、门禁、考勤中就已有应用,其硬件结构相当于一颗RGB摄像头,通过捕捉人脸图像...图片来源:《2021人脸识别行业白皮书》 3D人脸识别技术 3D人脸识别技术加入了深度信息算法技术,与2D识别技术相比,其识别准确率相差不大,但是在活体检测的准确率上有一定的提高。...图片来源:https://www.guayunfan.com/lilun/560934.html 在3D人脸识别厂家中, 以结构光技术为主打的厂家有:奥比中光、的卢深视、深岚视觉等; 以TOF技术为主打的厂家有...:艾芯智能等; 以双目视觉为主打的厂家有:商汤、旷视等 与2D人脸识别相比,3D人脸识别结合深度信息,在防伪安全上由此有了提高,在3D人脸识别的3中技术中,结构光作用距离相对较近,良率及一致性相对较差;

    2.4K30

    不“丢脸”实现人脸识别,使用TiFGAN合成音频 | AI Scholar Weekly

    此外,该方法还启发了DNN技术在ML领域之外的应用。...原文: https://arxiv.org/abs/1902.04250v1 基于CMH-ECC技术的高效人脸图像检索 研究人员提出了一种新的深度纠错交叉模式散列(Error-Corrected Deep...该算法基于深度神经网络,不改变原有的人脸也不会合成新的人脸,而是采用预先训练的人脸属性转移模型,将人脸属性映射到多个志愿的人脸供体上,实现了自然的人脸外观,同时保证了合成数据中的身份变化。...潜在应用与效果 这种新的建模方法消除了音频合成中质量下降和失真的问题,真正展示了GANs中休眠的潜力,可以探索和利用这些潜力生成一次性的完整信号,从而实现更有效的音频合成。...而且,如果对抗性时频特性的产生可以应用于音频合成,那么这也意味着人工智能研究界开始了一段新的旅程——试图利用GANs更深入、更有效地与人工智能进行音频合成

    88620

    方兴未艾的语音合成技术与应用

    在漫长的探索过程中,真正产生实用意义的合成系统,产生于 20 世纪 70 年代。受益于计算机技术和信号处理技术的发展,第一代参数合成系统--共振峰合成系统诞生了。...之后,语音合成技术不断向前发展,参数合成、拼接合成两条主要的技术路线都取得了长足进展,相互竞争、相互促进,使得合成语音的质量大幅提升,语音合成技术在众多场景中得以应用。...语音合成系统框图 以上,是语音合成技术的发展概况。接下来,我们来探讨一下最近几年深度学习技术合成技术发展的影响。...▌二、深度学习与语音合成 深度学习技术,对语音合成的影响,主要分为两个阶段: 第一阶段:锦上添花。从 2012 年开始,深度学习技术在语音领域逐渐开始受到关注并得以应用。...以配音领域为例,利用语音合成技术,可以大大降低配音的成本和周期;以目前火爆的短视频为例,利用语音合成技术可以非常容易地为自己的视频配上有趣的声音来展现内容;以虚拟主持人为例,利用语音合成技术,可以提升信息的时效性

    1.6K40

    应用人脸活体检测技术,保障人脸识别技术的安全性

    目前,深度学习的发展使人脸识别技术的性能有了质的提升,其具有自然、直观、易用等优点, 已广泛应用于智能安防、公安刑侦、金融社保、智能家居、电子商务、人脸娱乐、医疗教育等领域, 应用场景丰富,...然而, 人脸识别技术的广泛应用亦使得人脸识别技术的安全性问题日益凸显,传统的人脸识别研究专注于整体识别性能的提升, 并不判断当前获取的人脸图像是来自活体人脸还是假体人脸。...若不法分子利用传统人脸识别技术的这个安全性隐患, 使用假体人脸成功冒用合法用户身份, 从短期来看, 侵犯了合法用户的权益, 较大可能造成生命财产损失; 从长远来看, 亦会影响人脸识别技术的进一步广泛深入应用...因此, 如何准确识别活体人脸与假体人脸, 保障人脸识别技术的安全性成为一个亟待解决的问题。因此,人脸活体检测研究具有非常重要的应用价值。      ...随着人脸识别技术的广泛应用, 人脸活体检测作为保障人脸识别技术安全性的关键环节, 逐渐成为计算机视觉、模式识别、人脸识别领域非常活跃的研究方向,也将推动人脸识别技术、生物识别技术更广泛、更深入的应用。

    1.4K20

    人脸识别技术的发展历程

    人脸识别既是一项起源较早的技术,又是一门焕发着活跃生命力、充满着学术研究魅力的新兴技术领域。...随着近些年人工智能、大数据、云计算的技术创新幅度的增大,技术更迭速度的加快,人脸识别作为人工智能的一项重要应用,也搭上了这3辆“快车”,基于人脸识别技术的一系列产品实现了大规模落地。 ?...在可以预见的未来,人脸识别领域必将会散发出更耀眼的光芒。 下面,我们将从人脸识别的历史发展情况和当前技术热点,揭秘这项神秘而又熟悉的技术。...但真正与我们现在的人脸识别技术有较多关联的研究,其实出现在20世纪70年代。...人脸识别作为当前非常热门且技术含量很高的一项技术,吸引了很多优秀学者与工程师的目光。在如今这个“数据爆炸”的新时期,人脸识别作为一项炙手可热的研究领域迎来了发展的新契机。

    9.8K40

    自然场景人脸检测技术实践

    相信大家作为各公司技术团队的骨干,应该也和我的同事们一样,正在紧张忙碌地用技术支撑着各方面的工作,同舟共济,抗击疫情吧。请大家注意做好个人和家庭防护,多加强运动,提高免疫力。...今天美美给大家带来两篇人工智能领域的技术文章。一篇是机器学习平台的建设实践,一篇是自然场景中的人脸检测,希望对大家有所启发。...在自然场景中,人脸检测技术挑战极大,美团AI平台视觉智能中心从底层算法模型和系统架构两个方面进行了改进,开发了高精度人脸检测模型VICFace。...一、背景 人脸检测技术是通过人工智能分析的方法自动返回图片中的人脸坐标位置和尺寸大小,是人脸智能分析应用的核心组成部分,具有广泛的学术研究价值和业务应用价值,比如人脸识别、人脸属性分析(年龄估计、性别识别...图1 自然场景人脸检测样本示例 二、技术发展现状 跟深度学习不同,传统方法解决自然场景人脸检测会从特征表示和分类器学习两个方面进行设计。

    1K20

    技术综述】人脸表情识别研究

    随着机器学习和深度神经网络两个领域的迅速发展以及智能设备的普及,人脸识别技术正在经历前所未有的发展,关于人脸识别技术讨论从未停歇。...检测出人脸后,可对人脸进行分析,获得眼、口、鼻轮廓等72个关键点定位准确识别多种人脸属性,如性别,年龄,表情等信息。该技术可适应大角度侧脸,遮挡,模糊,表情变化等各种实际环境。...在这里,用户可以通过人脸识别技术,搜索发送相应表情。Polygram是一个人工智能动力社会网络,可以理解人脸表情。...它以基于人脸识别的表情包为主要特色,即能够利用人脸识别技术,对面部的真实表情进行检测,从而搜索到相应的表情,并发送该表情。...如果将深度学习中常用的网络层CNN,RNN,Fully-Connect等层组合成网络,将会产生多种选择,然而这些网络性能的好与坏需要更多地探讨,经过很多研究者的一系列实践,很多网络模型已经具备很多的性能

    3.7K41
    领券