首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    大数据能力提升项目|学生成果展系列之七

    导读 为了发挥清华大学多学科优势,搭建跨学科交叉融合平台,创新跨学科交叉培养模式,培养具有大数据思维和应用创新的“π”型人才,由清华大学研究生院、清华大学大数据研究中心及相关院系共同设计组织的“清华大学大数据能力提升项目”开始实施并深受校内师生的认可。项目通过整合建设课程模块,形成了大数据思维与技能、跨界学习、实操应用相结合的大数据课程体系和线上线下混合式教学模式,显著提升了学生大数据分析能力和创新应用能力。 回首2022年,清华大学大数据能力提升项目取得了丰硕的成果,同学们将课程中学到的数据思维和技能成功

    06

    J. Cheminform. | DrugEx v2:多重药理学中基于pareto的多目标强化学习的药物分子从头设计

    本文介绍的是由荷兰莱顿药物研究学术中心、西安交通大学电子与信息工程学院和莱顿高级计算机科学研究所联合发表在Journal of Cheminformatics上的研究成果。作者在之前的一项研究中提出了一种名为DrugEx的药物分子生成方法,将探索策略集成到基于RNN的强化学习中,以提高生成分子的多样性。在本文中,作者通过多目标优化扩展DrugEx算法,以生成针对多个靶标或一个特定靶标的类药物分子,同时避免脱靶(本研究中的两个腺苷受体,A1AR和A2AAR,以及钾离子通道hERG)。该模型使用RNN作为智能体(agent),机器学习预测器作为环境,agent和环境都被预先训练,然后在强化学习框架下交互。作者将进化算法的概念融合到模型中,交叉和变异操作由与agent相同的深度学习模型实现。训练期间,agent生成一批SMILES形式的分子。随后,环境提供的所有靶标的亲和力分数将用于构建生成的分子的帕累托排名,该排序采用了非支配排序算法和拥挤距离算法。作者证明了生成的化合物可以对多种靶标进行作用,并具有高效低毒的潜力。

    05

    HTTP、HTTPS、加密型webshell一网打尽

    webshell是黑客进行网站攻击的一种恶意脚本,识别出webshell文件或通信流量可以有效地阻止黑客进一步的攻击行为。目前webshell的检测方法主要分为三大类:静态检测、动态检测和日志检测[1]。静态检测通过分析webshell文件并提取其编写规则来检测webshell文件,是目前最为常用的方法,国内外的webshell识别软件如卡巴斯基、D盾、安全狗、河马webshell等都是采用静态检测的方法,但由于webshell会不断地演化从而绕过检测[2],所以静态检测最大的问题在于无法对抗混淆、加密的webshell以及识别未知的webshell[3];动态检测通过监控代码中的敏感函数执行情况来检测是否存在webshell文件[4],但由于涉及到扩展、Hook技术,性能损耗以及兼容性都存在很大的问题,所以难以大规模推广应用;日志检测主要通过webshell的通信行为做判断[5],相对于以上两种检测方法来说,不仅检测效果好也不存在兼容性问题。

    02

    【论文解读】针对生成任务的多模态图学习

    多模态学习结合了多种数据模式,拓宽了模型可以利用的数据的类型和复杂性:例如,从纯文本到图像映射对。大多数多模态学习算法专注于建模来自两种模式的简单的一对一数据对,如图像-标题对,或音频文本对。然而,在大多数现实世界中,不同模式的实体以更复杂和多方面的方式相互作用,超越了一对一的映射。论文建议将这些复杂的关系表示为图,允许论文捕获任意数量模式的数据,并使用模式之间的复杂关系,这些关系可以在不同样本之间灵活变化。为了实现这一目标,论文提出了多模态图学习(MMGL),这是一个通用而又系统的、系统的框架,用于从多个具有关系结构的多模态邻域中捕获信息。特别是,论文关注用于生成任务的MMGL,建立在预先训练的语言模型(LMs)的基础上,旨在通过多模态邻域上下文来增强它们的文本生成。

    02
    领券