多亏了更快更好的计算,我们终于能利用神经网络和深度学习真正的力量了,这都得益于更快更好的 CPU 和 GPU。无论我们喜不喜欢,传统的统计学和机器学习模型在处理高维的、非结构化数据、更复杂和大量数据的问题上存在很大的局限性。 深度学习的好处在于,在构建解决方案时,我们有更好的计算力、更多数据和各种易于使用的开源框架,比如 keras、TensorFlow 以及 PyTorch。 深度学习的坏处是什么呢?从头开始构建你自己的深度学习环境是很痛苦的事,尤其是当你迫不及待要开始写代码和实现自己的深度学习模型的时候。
对于各种热门的机器学习、深度学习课程,你一定了解过不少了。 但上课之后,如何把学出来的这些新方法用在你的工作项目?如何让你的移动应用也能具备机器学习、深度学习的能力? 具体做这事的话: 你是该自己训练模型,还是用现成的模型? 你是该用自己的电脑训练,还是在云端上训练? 你是需要深度学习部署在云端,还是移动端? 本文将对这些问题作出具体的解答。 作者 | Matthijs Hollemans 编译 | AI100 面对时下大热的机器学习和深度学习,是时候来加强你的移动应用了! 可你有什么好主意吗?
摘要 深度学习的概念源于人工神经网络的研究,含多隐层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。 机器学习与深度学习应用
AI 科技评论按:如今,基于深度学习的 AI 系统日趋产业化,如何有效地在云端和雾端进行落地成为一个核心问题。相对于传统机器学习,深度学习无论是训练还是部署都对计算和通信等提出了很大的挑战。在云端(如 Google Cloud、Amazon AWS、Microsoft Azure、Facebook Big Basin),深度神经网络的训练依赖于分布式系统,其可扩展性受限于通信带宽。 在雾端(Fog Computing,如移动手机的 Face ID、无人机、去中心化自动驾驶系统等),便携设备的计算等资源有限,深度神经网络的高效部署依赖于模型压缩与加速技术,以完成轻量级部署。
简介 近日重温了《深度学习在腾讯的平台化和应用实践(全)》,感兴趣可以在这里阅读 https://zhuanlan.zhihu.com/p/21852266 ,里面介绍了腾讯在深度学习平台基础架构上细致的工作,本人在2016 C++及系统软件大会上也分享了小米cloud machine learning平台的细节,在此给大家总结和对比一下。 腾讯Mariana平台 在前面提到的文章中,已经详细介绍了腾讯深度学习平台,也就是Mariana项目的实现细节了,这是一个真正意义上的平台。在参考文献上也体现出来,腾讯
懒人阅读:人工智能芯片是人工智能的“大脑”,可以分为终端和云端两个应用方向。目前主流CPU、CPU+GPU、CPU+FPGA、CPU+ASIC架构。人工智能芯片具有两个突出特点:一是算法与芯片的高度契合,面向终端和云端不同需求提升计算能力;二是专门面向细分应用场景的智能芯片,如语音识别芯片、图像识别芯片、视频监控芯片等。
过去的几年中,Python 已成为机器学习和深度学习的首选编程语言。与机器学习和深度学习相关的大多数书籍和在线课程要么只用 Python,要么再带上 R 语言。Python 有着丰富的机器学习和深度学习库、专门优化的实现,具备可伸缩性和大量功能,因而广受欢迎。
序言:过去六周以来,我们为NVIDIA的开发者举办了世界巡回会议。GTC技术大会(GPU Technology Conference)从2009年开始举办,目的在提倡利用GPU大量平行处理,来达到高效能运算的新方法。GTC技术大会,俨然已成为GPU深度学习的技术军火库—创新的运算模型,足以引燃现代AI人工智能的大爆炸。AI人工智能正如火如荼地进展着,GPU深度学习开发者的数量,在短短两年间跃升了25倍。大约有1,500间AI相关的新创公司窜出,如此爆炸性的成长,加速了GTC技术大会在全球召开的需求。目前,我
机器之心报道 机器之心编辑部 据日本媒体近日报道,英伟达最近修改了其在 GeForce 系列显卡软件上的用户许可协议(EULA)上的部分条款,使得其在服务器端除区块链软件以外,运行其他的所有程序均成为「未经许可的行为」。这意味着开发者们在未来将难以利用云服务器端的 Geforce 显卡进行诸如深度学习模型训练等工作。这一行动被认为是英伟达在机器学习上强推 Tesla 系列计算卡的举动。 根据新的协议,普通用户仍可以购买并使用 Geforce 系列显卡的硬件,自由进行使用。而在数据中心上,除区块链程序以外的所
机器之心报道 作者:李泽南 5 月 3 日,智能芯片公司寒武纪科技在上海举办了 2018 产品发布会。会上,寒武纪正式发布了多个最新一代终端 IP 产品——采用 7nm 工艺的终端芯片 Cambricon 1M、首款云端智能芯片 MLU100 及搭载了 MLU100 的云端智能处理计算卡。 在人工智能技术的发展过程中,神经网络正不断迈向更深、更复杂的方向,而硬件则正朝着机器学习任务处理专用的道路前进。目前,国内已出现十余家人工智能芯片公司,而寒武纪是其中的佼佼者。作为全球唯一一家 AI 芯片独角兽,寒武
安妮 发自 奥北科技园 量子位 出品 | 公众号 QbitAI 对AI芯片来说,“量产”是分水岭。 无论是成功流片,还是样片发布,离真正应用在各种场景都有段距离。具备量产的本领、能真正落地,就是一次质
机器之心报道 作者:李泽南 英伟达正与百度合力加速人工智能技术的发展。本次两方宣布的合作范围包括云数据中心、自动驾驶和智能家居等领域。 在 7 月 5 日的 Create2017 百度全球开发者大会上
导读:深度学习技术已经在互联网的诸多方向产生影响,每天科技新闻中关于深度学习和神经网络的讨论越来越多。深度学习技术在近两年飞速发展,各种互联网产品都争相应用深度学习技术,产品对深度学习的引入也将进一步影响人们的生活。
近日,百度飞桨旗下高性能的轻量化推理引擎Paddle Lite,与国内AI芯片独角兽寒武纪旗下云端人工智能处理器芯片思元270正式完成兼容性适配,而思元220边缘端芯片,也预计在近期完成适配工作。这也标志着寒武纪端云一体的人工智能芯片生态,与百度飞桨代表的深度学习框架生态的成功融合。
在今天的年度发布会上,拥有世界级算法优势的依图科技重磅推出云端AI芯片——求索(questcore™)!为AI芯片开辟了一条新道路。
10月17日,在北京举行的媒体沟通会上,比特大陆正式发布了终端人工智能芯片BM1880。此次一同发布的还有基于云端人工智能芯片BM1682 的算丰智能服务器SA3、嵌入式AI迷你机SE3、3D人脸识别智能终端以及基于BM1880的开发板、AI模块、算力棒等产品。
深度学习和大量的计算机资源整合将推进人工智能在各行业的应用。 2017年7月9日,由镁客网、振威集团联合主办的“3E‘硬纪元’AI+产业应用创新峰会”在北京国家会议中心盛大开幕。现场200位来自全球AI行业的顶级专家、知名创投机构、创业公司团队和知名媒体齐聚一堂,共谋AI+行业的创新应用,探讨AI的当下与未来。 来自英伟达的中国销售区总监何犹卿先生,在峰会期间进行了主题为“AI深度学习正在改变世界”的演讲。他表示,善用好深度学习和现有的大量计算机资源,将会很好得助推整个AI产业的发展。 以下为演讲实录(为方
作者 | DavidZh 当地时间 3 月 27 日,英伟达在美国圣克拉的 GTC 大会上推出多款产品。 ▌显卡扩容,史上最强的 DGX-2 发布 打头阵的是搭载英伟达 RTX(Real-Time Ray Tracing)技术的工作站显卡 Quadro GV100。 它通过并联两块 Quadro GPU 将内存扩展到了 64GB,可提供每秒 7.4 万亿次浮点运算的双精度性能,深度学习浮点运算性能每秒可达 118.5 万亿次,还支持实时的 AI 去噪。 英伟达还将 Tesla V100 的内存容量升级到
本文探讨了神经网络加速器在数据中心中的重要性,并提出了几种主要的神经网络加速器架构。这些架构包括基于GPU的架构、基于FPGA的架构和基于ASIC的架构。作者还讨论了这些架构的优缺点,并展望了未来神经网络加速器的发展方向。
据富士通公司官网报道,富士通实验室开发了一种具有唯一数值表示的电路技术,可以减少计算中使用的数据位宽,并能基于深度学习训练计算的特点,根据分布统计信息来自动控制小数点位置,保持深度学习所需的计算精度。在学习过程中,通过减少计算单元的位宽和记录学习结果的存储器位宽,可以提高能效。 富士通实验室通过对采用新电路技术的深度学习硬件进行仿真,证实该技术能显著提高能效。在使用LeNet卷积神经网络进行深度学习的案例中,能效可达到32位计算单元的四倍。利用该技术,可以拓展使用深度学习的高级人工智能的应用范围,使之包括云
AI科技评论按:如果您觉得,是时候给自己的手机应用添加一些热门的机器学习或深度学习算法.....这是个好想法!但您会怎么选择?致力于提供算法服务及小白科普的咨询师 Matthijs Hollemans 近期在博客上分享了他的一些心得体会,AI科技评论独家编译,未经许可不得转载。 绝大多数机器学习实现方法的步骤不外乎如下三点: 采集数据 利用采集的数据来训练一个模型 使用该模型进行预测 假设想做一个“名人匹配 (celebrity match) ”的应用程序,告诉用户他们和哪位名人最相似。首先收集众多名人
新智元报道 来源:The Information 编辑:司明 【新智元导读】2月12日,The Information的报告证实,亚马逊已经开始设计制造AI芯片,以提升Alexa语音助理的质量,为Echo设备提供支持。此举紧随苹果和谷歌的步伐,被视为亚马逊顺势而为的厚积薄发,至此,繁盛的AI芯片市场,百家争鸣,鹿死谁手? 2月12日,根据The Information的一份报告,亚马逊已经开始设计制造AI芯片,专用AI芯片也可以帮助Alexa减少对整体远程服务器的依赖,为Echo设备提供支持。 亚
---- 新智元报道 编辑:克雷格、肖琴 【新智元导读】今天,寒武纪发布第三代IP产品Cambricon 1M和最新一代云端AI芯片MLU100和板卡产品。MLU100云端芯片不仅可独立完成各种复杂的云端智能任务,更可以与寒武纪1A/1H/1M系列终端处理器完美适配,让终端和云端在统一的智能生态基础上协同完成复杂的智能处理任务。 今天,寒武纪科技放出两个重磅“炸弹”: 寒武纪最新一代终端IP产品-Cambricon 1M 寒武纪最新一代云端AI芯片MLU100和板卡产品 寒武纪创始人陈天石介绍,这次
这是一场由互联网边缘发迹的革命。Google、Amazon、BAT等重量级科技巨头玩家,此前早已盯准了云端的超级赛道。随着AI和分布式计算的发展,另一场革命风暴在边缘开始酝酿。
他们正式对外发布了终端人工智能芯片BM1880,以及基于云端人工智能芯片BM1682 的算丰智能服务器SA3、嵌入式AI迷你机SE3、3D人脸识别智能终端以及基于BM1880的开发板、AI模块、算力棒等产品。
以下为演讲实录: 吴恩达:谢谢,大家好,人工智能已经在世界有很大的影响力,百度是引领人工智能发展的公司之一,今天我想跟大家分享一些我们正在做的先进技术,我也希望未来我们能把这些技术开放给我们的合作伙伴。 从李彦宏讲的一席话里我们看到语音识别重要性,百度和北京团队一起正在研究新一代的语音识别技术,让我为大家演示一下。这是一段用户手机的录音,请大家仔细听听,你能听出他在讲什么吗。来。现在请大家闭上眼睛再听一次他到底在讲什么。有时候由于噪音、口音等等,很难听清楚电话那边的人在说什么,我们把这段语音放给我们
【新智元导读】本文从算法、市场及硬件三个角度观察深度学习对计算机视觉的影响,并补充完整视频。谷歌TensorFlow移动端和嵌入式应用团队负责人Pete Warden介绍了如何用TensorFlow框架开发不同的低能耗深度学习产品。调研公司Tractica首席分析师表示,到2024年,深度学习服务业产值将超过500亿美元。IEEE Fellow Chris Rowen预测,神经网络将催生出新的价值链,全新的IP、工具和数据服务也会应运而生。 嵌入式视觉联盟主编Brian Dipert今天发布博文,介绍了2
【新智元导读】本文从算法、市场及硬件三个角度观察深度学习对计算机视觉的影响。以下三个视频中,谷歌TensorFlow移动端和嵌入式应用团队负责人Pete Warden介绍了如何用TensorFlow框架开发不同的低能耗深度学习产品。调研公司Tractica首席分析师表示,到2024年,深度学习服务业产值将超过500亿美元。IEEE Fellow Chris Rowen预测,神经网络将催生出新的价值链,全新的IP、工具和数据服务也会应运而生。 嵌入式视觉联盟主编Brian Dipert今天发布博文,介绍了2
最近,端测的AI推理芯片市场一片火热,英伟达和英特尔正面对垒,初创企业如履寒冰。而云上AI训练市场,已经从早期的GPU一统天下,发展到如今多方势力割据的局面。
网易高级副总裁,网易有道CEO周枫 响应更快(不需要网络通信延迟),节省流量(不需要上传数据),可以实时处理视频(实时上传和处理视频不够快),对开发者更便宜(不需要租用服务器)。 这四个原因决定了手机端深度学习,将是下一个大浪潮 作者 | 周枫 上周WWDC上苹果发布的大量软硬件产品中,Core ML看起来是很不起眼的一个。简单来说,它是秋季正式上市的iOS 11新增的人工智能编程框架,让开发 者可以更方便地为App增加基于人工智能算法的功能。 关注人工智能或深度学习的产品和技术人员应该重视Co
【新智元导读】云知声 CEO 黄伟在 世界人工智能大会 AI WORLD 2016 发表演讲《AI 已来,未来已来》,分享了云知声在技术、产品、商业上的思考。黄伟在演讲中提到,AI 正从感知迈入认知阶段,交互方式的改革让智能语音市场前景无限。黄伟以云知声在智能语音、智能家居、智能车载等领域的技术和应用落地为例,介绍了深度学习、大数据和云计算的结合如何促进 AI 产业发展。最后,黄伟呼吁 AI 从业者,要通过技术和商业上的努力,真正把人工智能技术带入生活。 【黄伟】:大家下午好!今天非常高兴能够参加这么一个
【新智元导读】英特尔与英伟达在数据中心市场激烈竞争:截止 4 月 30 日,英伟达的收入同比增长了 48%,达到 19.4 亿美元;但数据表明,英特尔不仅没有失去数据中心市场,地位反而更加稳固。另一方面,在个人训练深度学习模型时,也会在云端 CPU 和 GPU 间做出选择。前苹果工程师 Max Woolf 做了测评——由于谷歌云平台的收费规则,在有些情况下,使用 CPU 比 GPU 在经济上更划算。 英特尔和英伟达正在新的市场——蒸蒸日上的数据中心上展开竞争,而其中核心的部分自然是人工智能(AI)。截止 4
百度首席科学家吴恩达(Andrew Ng)曾经说,深度学习的前沿正转移到高性能计算(HPC),NVIDIA、AMD及Google、阿里巴巴等公司也确实都在为深度学习研发HPC的新能力。那么,深度学习任务为HPC注入了哪些新的东西?除了深度学习,HPC还有哪些值得关注的技术趋势?在9月24日的2015高性能计算用户大会(HPCUF2015)上,北京航空航天大学教授、国家863计划“高性能计算机及其核心软件”重大专项总体组组长钱德沛,浪潮集团高性能计算总经理刘军,以及IDC 副总裁、IDC HPC User F
AI技术有三大要素:算法、算力、数据。由于AI技术的应用,对各种硬件设备的算力要求大幅提高,AI芯片应运而生,目前AI芯片发展的重点是针对神经网络等架构实现高速运算的核心硬件,即算力提高阶段。可能未来AI技术成熟之后,AI芯片可以实现集算法与算力于一体的超脑能力。
为了让大家了解不同应用场景下的GPU云服务器选型 我们邀请腾讯云大茹姐姐创作了这篇深度好文 要看完呐~~↓↓↓ 随着云计算、大数据和人工智能技术的飞速发展,算法越来越复杂,待处理的数据量呈指数级增长,当前的X86处理器的数据处理速度,已经不足以满足深度学习、视频转码的海量数据处理需求,大数据时代对计算速度提出了更高的要求,至此,GPU处理器应运而生。 腾讯云根据GPU的应用场景,已推出多款GPU实例,如GN10X/GN10Xp(NVIDIA Tesla V100)、GN7(NVIDIA Tesla
大数据、云计算、人脸识别、自动驾驶……近年来这些耳熟能详的人工智能科技,正在悄然改变着我们的生活。英特尔作为全球领先的科技公司,一直致力于用人工智能解决大问题。
SuperVessel的云端GPU共享技术为全球首发,**它基于POWER 8处理器和NVIDIA® Tesla® K40 GPU加速器的异构计算系统。**Tesla K40是Tesla加速计算平台的高端加速器,可以向用户提供超级计算级的性能,满足各种严苛的HPC应用需求。 NVIDIA所推出的cuDNN(CUDA深度神经网络库)可以被集成到各个主流深度学习框架中以提供GPU加速支持,其中就包括此次SuperVessel超能云GPU加速服务提供的Caffe、Torch、Theano框架,助研究人员实现更加高效的深度学习模型训练。
在2015 年的百度世界大会上,百度董事长兼首席执行官李彦宏宣布在最新的手机百度6.8版本中推出机器人助理——度秘(英文名:duer),并解释了推出度秘的原因、度秘背后的技术以及度秘的未来规划。百度首席科学家吴恩达则展示了百度深度学习技术的进展,包括在噪音环境下的语音识别效果,以及基于手机深度学习引擎的iOS版脸优APP。 李彦宏:度秘及其三大基石 李彦宏表示,在各种O2O服务层出不穷、360行裂变为3600行的今天,用户对服务的需求也迅速增长,而服务的搜索过程不同于单纯的信息检索,服务需求的提出是一个动态
---- 新智元报道 【新智元导读】今天微软人工智能大会上,微软宣布推出Azure机器学习、Visual Studio Tools for AI等100项微软AI服务与开发工具,以及在线人工智能学院等众多福利。 2018 微软人工智能大会(AI Innovate)上,微软发布两项大福利: 第一个是推出“3个100”计划: 发布Azure机器学习、Visual Studio Tools for AI等100项微软人工智能服务与开发工具; 与来自100家具有影响力的企业的开发者和数据科学家合作; 创造1
AI大潮汹涌,吸引了越来越多的人才进入来添砖加瓦。而其中,除去核心的算法工程师、科学家外,催生了大量相关的从业人员。而无论你是销售,产品,设计,甚至是协作的APP开发或投资人,无论你之前是否是理工背景,从事其中自然需要了解一些基本的技术相关知识。这样,无论你是判断一家合作、投资公司的技术实力,更好的配合算法团队,乃至在“高深”的算法人员前快速建立交流自信,本文都会快速带来帮助。
机器之心原创 作者:高静宜 3 月 28 日,腾讯云宣布推出深度学习平台 DI-X(Data Intelligence X),为机器学习、深度学习用户提供一站式服务,为其在 AI 领域的探索降低门槛并提供最流畅的体验。DI-X 平台基于腾讯云的大数据存储与处理能力,集成 Caffe、TensorFlow、Torch 主流深度学习框架,主打行云流水的拖拽式操作,具备强大的业内开源及腾讯自研算法库和模型库。DI-X 平台的推出是腾讯在 AI 领域长线布局中不可缺少的一环,也宣告腾讯云在 AI 布局的全面加速。
人工智能、机器学习以及深度学习这些热点技术,受到了极为广泛的关注,这要归功于很多大型互联网公司对这些技术的应用,人工智能算法,例如图像或者语音识别,以及自然语言处理,我们大多数人几乎每天都会使用这样的系统和应用。
受人类活动增加、森林砍伐、栖息地退化等多种因素的影响,野生东北虎种群及其栖息地在不断地萎缩,自2012年至2015年期间,有关部门在中国境内通过野外红外相机仅监测到不到30只野生东北虎个体。野生东北虎处于食物链顶端,它们的生存状态是反映整个生态系统是否健康的一项重要指标。
【新智元导读】人工智能系统的加速正在从根本上重塑着每年创造了3350亿美元的半导体行业。计算机开始认识一切,从花草到人脸,从文本到声音,以及学会开车。统治了计算机行业近半个世纪的摩尔定律正在受到挑战,计算性能的提升不再依赖于晶体管数量的增长,还有专用负载芯片产业的蓬勃。英特尔面临着英伟达、微软、苹果、谷歌等巨头以及CEVA、Eyeriss、寒武纪、华为等 AI 芯片新玩家不同方向的围攻。 人工智能技术尤其是深度学习的兴起,让各大公司都注意到必须要填补的计算力鸿沟。越来越多的研究人员开始重新思考计算的本质,从
从单一的加密货币芯片“一条腿走路”至研发AI芯片双足并行,前路虽难,比特大陆却已然辟出了一条道。
在这一部分中,我们将探讨人工智能是如何推动这两个转变:边缘处理的复苏,以及新处理架构的到来。
作者 | 唐洁 责编 | 何永灿 通过深度学习技术,物联网(IoT)设备能够得以解析非结构化的多媒体数据,智能地响应用户和环境事件,但是却伴随着苛刻的性能和功耗要求。本文作者探讨了两种方式以便将深度学习和低功耗的物联网设备成功整合。 近年来,越来越多的物联网产品出现在市场上,它们采集周围的环境数据,并使用传统的机器学习技术理解这些数据。一个例子是Google的Nest恒温器,采用结构化的方式记录温度数据,并通过算法来掌握用户的温度偏好和时间表。然而,其对于非结构化的多媒体数据,例如音频信号和视觉图像则显得
11月26日至30日,亚马逊2018 re:Invent 开发者大会在美国拉斯维加斯举行。亚马逊推出首款自研ARM架构云服务器CPU Graviton和首款云端AI推理芯片AWS Inferentia,力图走一条自己的云端芯一体化路线。
中国开发者们的年度盛会——百度AI开发者大会近日落下帷幕。本次大会中,深度学习框架PaddlePaddle也备受关注,分论坛深度学习公开课现场气氛活跃。小PP梳理本届开发者大会中关于PaddlePaddle的亮点,和小伙伴们一起回顾精彩瞬间~
领取专属 10元无门槛券
手把手带您无忧上云