首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

原来使用 Pandas 绘制图表也这么惊艳

%matplotlib 内联魔法命令也被添加到代码中,以确保绘制的数字正确显示在笔记本单元格中: import pandas as pd import numpy as np import matplotlib.pyplot...: 正如我们在图中看到的,title 参数为绘图添加了一个标题,而 ylabel 为绘图的 y 轴设置了一个标签。...默认情况下显示图例的图例,但是我们可以将 legend 参数设置为 false 来隐藏图例。 条形图 条形图是一种基本的可视化图表,用于比较数据组之间的值并用矩形条表示分类数据。...该图表可能包括特定类别的计数或任何定义的值,并且条形的长度对应于它们所代表的值。 在下面的示例中,我们将根据每月平均股价创建一个条形图,来比较每个公司在特定月份与其他公司的平均股价。...字符串值分配给 kind 参数来创建水平条形图: df_3Months.plot(kind='barh', figsize=(9,6)) Output: 我们还可以在堆叠的垂直或水平条形图上绘制数据

4.6K50

数据导入与预处理-拓展-pandas可视化

条形图 2.1 单行垂直/水平条形图 2.2 多行条形图 3. 直方图 3.1 生成数据 3.2 透明度/刻度/堆叠直方图 3.3 拆分子图 4....条形图 2.1 单行垂直/水平条形图 单行垂直/水平条形图 生成数据: # 生成数据 df2 = pd.DataFrame(np.random.rand(10, 4), columns=["a", "...b", "c", "d"]) df2 输出为: # kind = 'bar'表示垂直,若kind = 'barh'表示为水平 # 重新生成数据,并对使用条形图可视化 df2 的第 3 行 df2....iloc[2].plot(kind = 'bar', figsize=(10, 6)) plt.show() 输出为: 2.2 多行条形图 多行堆叠 # 多行,堆叠对应着着stacked=True...总结 关于pandas的可视化的用法还有很多,这里不再拓展,但还是建议使用matplotlib,seaborn等库完成绘图。

3.1K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    这些条形图的用法您都知道吗?

    前提是绘图数据已做了统计汇总); position:用于设置条形图的摆放位置,默认为'stack',表示绘制堆叠条形图;如果指定为'dodge',表示绘制水平交错条形图;如果为'fill',表示绘制百分比堆叠条形图...ggplot函数中的数据与geom_*函数中的数据存在冲突时,可以将该参数设置为FALSE; 为使读者进一步理解和掌握上面所介绍的函数,接下来利用如上的geom_bar绘制几种常见的条形图。...函数实现重排序)、数值标签的添加(代码中的geom_text函数)以及平均水平参考线的添加(代码中的geom_hline)。...在实际应用中,对于单离散变量和单数值变量的条形图,右图会更加受欢迎,因为它更加直观(借助于排序可以迅速地发现柱子的最高、最低及差异;借助于数值标签可以明确地得知各离散水平下的具体值;借助于参考线可以比较哪些水平值高于平均水平...然而,在实际的企业环境中,这样的图形出现的频次并不是很高,因为绝对数量的堆叠条形图并不能够达到刺激效果。读者不妨使用下面介绍的百分比堆叠条形图。

    5.6K10

    Pandas数据可视化

    单变量可视化, 包括条形图、折线图、直方图、饼图等 数据使用葡萄酒评论数据集,来自葡萄酒爱好者杂志,包含10个字段,150929行,每一行代表一款葡萄酒 加载数据 条形图是最简单最常用的可视化图表 在下面的案例中...一:对数据进行采样 二:hexplot(蜂巢图) hexplot hexplot将数据点聚合为六边形,然后根据其内的值为这些六边形上色: 上图x轴坐标缺失,属于bug,可以通过调用matplotlib的...api添加x坐标: 该图中的数据可以和散点图中的数据进行比较,但是hexplot能展示的信息更多 从hexplot中,可以看到《葡萄酒杂志》(Wine Magazine)评论的葡萄酒瓶大多数是87.5分...堆叠图(Stacked plots) 展示两个变量,除了使用散点图,也可以使用堆叠图 堆叠图是将一个变量绘制在另一个变量顶部的图表 接下来通过堆叠图来展示最常见的五种葡萄酒  从结果中看出,最受欢迎的葡萄酒是...: 通过透视表找到每种葡萄酒中,不同评分的数量 : 从上面的数据中看出,行列分别表示一个类别变量(评分,葡萄酒类别),行列交叉点表示计数,这类数据很适合用堆叠图展示 折线图在双变量可视化时,仍然非常有效

    12610

    你知道怎么用Pandas绘制带交互的可视化图表吗?

    我们还可以设置很多参数,用来设置可视化图表的一些功能: kind : 图表类型,目前支持的有:“line”、“point”、“scatter”、“bar”和“histogram”;在不久的将来,更多的将被实现为水平条形图...( figsize=(800, 450), # 图的宽度和高度 y="苹果", # y的值,这里选择的是df数据中的苹果列 title="苹果", # 标题 xlabel...,它们是: plot_data_points:添加绘制线上的数据点 plot_data_points_size:设置数据点的大小 标记:定义点类型*(默认值:circle)*,可能的值有:“circle...柱状图(条形图) 柱状图没有特殊的关键字参数,一般分为柱状图和堆叠柱状图,默认是柱状图。...面积图 面积图嘛,提供两种:堆叠或者在彼此之上绘制 stacked:如果为 True,则面积图堆叠;如果为 False,则在彼此之上绘制图。

    3.8K30

    如何在 Python 中使用 plotly 创建人口金字塔?

    plotly.express 和用于将数据加载到数据帧中的 pandas。...x 参数指定要用于条形长度的变量,条形长度是每个年龄组中的人数。 y 参数指定要用于条形高度的变量,即年龄组。 方向参数指定条形应该是水平的。 颜色参数指定条形应按性别着色。...barmode 参数指定条形应相对于彼此堆叠。 range_x 参数指定 x 轴的范围,该范围确定金字塔的大小。 最后,我们使用 show() 方法打印绘图。...数据使用 pd.read_csv 方法加载到熊猫数据帧中。 使用 go 为男性和女性群体创建两个条形图轨迹。条形方法,分别具有计数和年龄组的 x 和 y 值。...方向设置为水平,并使用名称和标记参数为每条迹线指定名称和颜色。 将为绘图创建一个布局,其中包含 x 轴和 y 轴的标题和标签。 使用 go 创建图形。图法与两条迹线和布局。

    41610

    Pandas可视化综合指南:手把手从零教你绘制数据图表

    最近,一位来自印度的小哥以2019年世界幸福指数的数据为例,详细讲述了在Pandas中plot()函数的各种参数设置的小技巧,熟练掌握这些技巧后,你也能绘制出丰富多彩的可视化图表。...此外,Pandas中还有一个辅助函数pandas.plotting.table,它创建一个来自数据帧的表格,并将其添加到matplotlib Axes实例中。...比如对于x轴,我们想要标上0、10、15和20几个值;对于y轴,我们想要标上0、50、70、100几个值,可以在xticks和yticks参数中悉数列出。...其他高阶用法 可以使用stacked参数来绘制带有条形图的堆叠图。在这里,我们绘制堆叠的水平条,stacked设置为True。 ? 将grid参数设置为True,可以给图表加入网格。 ?...当subplot 设置为True 时,在设置一组title的值,即可在列表上方加入标题。

    2.6K20

    Pandas可视化综合指南:手把手从零教你绘制数据图表

    最近,一位来自印度的小哥以2019年世界幸福指数的数据为例,详细讲述了在Pandas中plot()函数的各种参数设置的小技巧,熟练掌握这些技巧后,你也能绘制出丰富多彩的可视化图表。...此外,Pandas中还有一个辅助函数pandas.plotting.table,它创建一个来自数据帧的表格,并将其添加到matplotlib Axes实例中。...比如对于x轴,我们想要标上0、10、15和20几个值;对于y轴,我们想要标上0、50、70、100几个值,可以在xticks和yticks参数中悉数列出。...其他高阶用法 可以使用stacked参数来绘制带有条形图的堆叠图。在这里,我们绘制堆叠的水平条,stacked设置为True。 ? 将grid参数设置为True,可以给图表加入网格。 ?...当subplot 设置为True 时,在设置一组title的值,即可在列表上方加入标题。

    2.5K20

    『数据可视化』一文掌握Pandas可视化图表

    ') # 以下代码从全局设置字体为SimHei(黑体),解决显示中文问题【Windows】 plt.rcParams['font.sans-serif'] = ['SimHei'] # 解决中文字体下坐标轴负数的负号显示问题...数据源选择 这里是指坐标轴的x、y轴数据,对于Series类型数据来说其索引就是x轴,y轴则是具体的值;对于Dataframe类型数据来说,其索引同样是x轴的值,y轴默认为全部,不过可以进行指定选择。...条形图 条形图和柱状图其实差不多,条形图就是柱状图的横向展示 # 条形图barh df.plot.barh(figsize=(6,8)) ?...堆叠条形图 # 堆叠条形图 df.plot.barh(stacked=True) ? 直方图 直方图又称为质量分布图,主要用于描述数据在不同区间内的分布情况,描述的数据量一般比较大。...其他图表类型 在常见图表中,有密度图和六边形箱型图 绘制过程报错,暂时没有解决(本机环境:pandas1.3.1) 本节主要介绍散点矩形图、安德鲁曲线等,更多资料大家可以查阅官方文档了解 https:/

    8.1K40

    Pandas可视化综合指南:手把手从零教你绘制数据图表

    最近,一位来自印度的小哥以2019年世界幸福指数的数据为例,详细讲述了在Pandas中plot()函数的各种参数设置的小技巧,熟练掌握这些技巧后,你也能绘制出丰富多彩的可视化图表。...此外,Pandas中还有一个辅助函数pandas.plotting.table,它创建一个来自数据帧的表格,并将其添加到matplotlib Axes实例中。...比如对于x轴,我们想要标上0、10、15和20几个值;对于y轴,我们想要标上0、50、70、100几个值,可以在xticks和yticks参数中悉数列出。...其他高阶用法 可以使用stacked参数来绘制带有条形图的堆叠图。在这里,我们绘制堆叠的水平条,stacked设置为True。 ? 将grid参数设置为True,可以给图表加入网格。 ?...当subplot 设置为True 时,在设置一组title的值,即可在列表上方加入标题。

    1.8K50

    Pandas可视化综合指南:手把手从零教你绘制数据图表

    最近,一位来自印度的小哥以2019年世界幸福指数的数据为例,详细讲述了在Pandas中plot()函数的各种参数设置的小技巧,熟练掌握这些技巧后,你也能绘制出丰富多彩的可视化图表。...此外,Pandas中还有一个辅助函数pandas.plotting.table,它创建一个来自数据帧的表格,并将其添加到matplotlib Axes实例中。...比如对于x轴,我们想要标上0、10、15和20几个值;对于y轴,我们想要标上0、50、70、100几个值,可以在xticks和yticks参数中悉数列出。...其他高阶用法 可以使用stacked参数来绘制带有条形图的堆叠图。在这里,我们绘制堆叠的水平条,stacked设置为True。 ? 将grid参数设置为True,可以给图表加入网格。 ?...当subplot 设置为True 时,在设置一组title的值,即可在列表上方加入标题。

    1.9K10

    一文掌握Pandas可视化图表

    ') # 以下代码从全局设置字体为SimHei(黑体),解决显示中文问题【Windows】 plt.rcParams['font.sans-serif'] = ['SimHei'] # 解决中文字体下坐标轴负数的负号显示问题...数据源选择 这里是指坐标轴的x、y轴数据,对于Series类型数据来说其索引就是x轴,y轴则是具体的值;对于Dataframe类型数据来说,其索引同样是x轴的值,y轴默认为全部,不过可以进行指定选择。...) 柱状图多子图 # 柱状图多子图 df.plot.bar(subplots=True, rot=0) 条形图 条形图和柱状图其实差不多,条形图就是柱状图的横向展示 # 条形图barh df.plot.barh...(figsize=(6,8)) 堆叠条形图 # 堆叠条形图 df.plot.barh(stacked=True) 直方图 直方图又称为质量分布图,主要用于描述数据在不同区间内的分布情况,描述的数据量一般比较大...其他图表类型 在常见图表中,有密度图和六边形箱型图 绘制过程报错,暂时没有解决(本机环境:pandas1.3.1) 本节主要介绍散点矩形图、安德鲁曲线等,更多资料大家可以查阅官方文档了解 https:/

    8.1K50

    Pandas可视化综合指南:手把手从零教你绘制数据图表

    最近,一位来自印度的小哥以2019年世界幸福指数的数据为例,详细讲述了在Pandas中plot()函数的各种参数设置的小技巧,熟练掌握这些技巧后,你也能绘制出丰富多彩的可视化图表。...此外,Pandas中还有一个辅助函数pandas.plotting.table,它创建一个来自数据帧的表格,并将其添加到matplotlib Axes实例中。...比如对于x轴,我们想要标上0、10、15和20几个值;对于y轴,我们想要标上0、50、70、100几个值,可以在xticks和yticks参数中悉数列出。...其他高阶用法 可以使用stacked参数来绘制带有条形图的堆叠图。在这里,我们绘制堆叠的水平条,stacked设置为True。 ? 将grid参数设置为True,可以给图表加入网格。 ?...当subplot 设置为True 时,在设置一组title的值,即可在列表上方加入标题。

    2.6K20

    Pandas可视化综合指南:手把手从零教你绘制数据图表

    最近,一位来自印度的小哥以2019年世界幸福指数的数据为例,详细讲述了在Pandas中plot()函数的各种参数设置的小技巧,熟练掌握这些技巧后,你也能绘制出丰富多彩的可视化图表。...此外,Pandas中还有一个辅助函数pandas.plotting.table,它创建一个来自数据帧的表格,并将其添加到matplotlib Axes实例中。...比如对于x轴,我们想要标上0、10、15和20几个值;对于y轴,我们想要标上0、50、70、100几个值,可以在xticks和yticks参数中悉数列出。...其他高阶用法 可以使用stacked参数来绘制带有条形图的堆叠图。在这里,我们绘制堆叠的水平条,stacked设置为True。 ? 将grid参数设置为True,可以给图表加入网格。 ?...当subplot 设置为True 时,在设置一组title的值,即可在列表上方加入标题。

    1.7K10

    Python中最常用的 14 种数据可视化类型的概念与代码

    这些条的高度或长度与它们所代表的值成正比。条形可以是垂直的或水平的。垂直条形图有时也称为柱形图。 以下是按年指示加拿大人口的条形图。 条形图适合应用到分类数据对比,横置时也称条形图。...这是堆叠条形图的类型,其中每个堆叠条形显示其离散值占总值的百分比。...堆积面积图 在此图表中,彩色段彼此堆叠在一起。因此它们不相交。 100% 堆积面积图 在此图表中,每组数据所占的面积以占总数据量的百分比来衡量。通常,纵轴总计为 100%。...它显示为点的集合。它们在水平轴上的位置决定了一个变量的值。垂直轴上的位置决定了另一个变量的值。当一个变量可以控制而另一个变量依赖于它时,可以使用散点图。当两个连续变量独立时也可以使用它。...中位数(小提琴图上的一个白点) 四分位数范围(小提琴中心的黑色条)。 较低/较高的相邻值(黑色条形图)--分别定义为第一四分位数-1.5 IQR和第三四分位数+1.5 IQR。

    9.6K20

    Pandas可视化综合指南:手把手从零教你绘制数据图表

    最近,一位来自印度的小哥以2019年世界幸福指数的数据为例,详细讲述了在Pandas中plot()函数的各种参数设置的小技巧,熟练掌握这些技巧后,你也能绘制出丰富多彩的可视化图表。...此外,Pandas中还有一个辅助函数pandas.plotting.table,它创建一个来自数据帧的表格,并将其添加到matplotlib Axes实例中。...比如对于x轴,我们想要标上0、10、15和20几个值;对于y轴,我们想要标上0、50、70、100几个值,可以在xticks和yticks参数中悉数列出。...04 其他高阶用法 可以使用stacked参数来绘制带有条形图的堆叠图。在这里,我们绘制堆叠的水平条,stacked设置为True。 ? 将grid参数设置为True,可以给图表加入网格。 ?...当subplot 设置为True 时,在设置一组title的值,即可在列表上方加入标题。 ?

    1.7K30

    《数据可视化基础》第四章:可视化图形推荐

    除了条形图之外,我们还可以使用点图来进行可视化。这个点图是把点放到数量相对应的位置上来进行展示的。 ? 如果对于有多组类别的计数。我们可以使用分组或者堆叠的条形图来进行展示。...由于条形图可以分成水平也垂直的,所以也就分垂直和水平条形图了。饼图强调各个部分的总和并且可以突出显示简单的区分。但是每一部分之间的比较的话,并排的条形图可能更好一些。...堆叠的条形图对于每一部分的比较不是很容易区分,但是在比较多组比例的时候很有用。 ? 如果要进行多组比较的时候,这个时候饼图的空间往往就不够了。这个时候如果分组比较少的话,分组的条形图可以使用的。...另外,堆叠的条形图基本使用所有情况,如果是比例沿连续性变量进行变化的时候,使用堆叠的密度图是可以的。 ?...此外,我们可以根据数据为地图中的区域着色,从而显示不同区域中的数据值。这样的图被称为choropleth。

    2.4K30

    比较(一)利用python绘制条形图

    bar1 = sns.barplot(x='day', y='total_bill', data=non_smoker_df, color='lightblue') # 吸烟者的条形图,底部开始位置设置为非吸烟者的...bar1 = sns.barplot(x='day', y='percent', data=non_smoker_df, color='lightblue') # 吸烟者的条形图,底部开始位置设置为非吸烟者的...-水平条形图 plt.subplot(3, 3, 1) plt.barh(y_pos, height) plt.yticks(y_pos, bars) plt.title('水平条形图') # 指定顺序...绘制多样化的条形图 pandas主要利用barh绘制条形图,可以通过pandas.DataFrame.plot.barh[3]了解更多用法 修改参数 import matplotlib as mpl import...、matplotlib的bar和pandas的bar快速绘制条形图,并通过修改参数或者辅以其他绘图知识自定义各种各样的条形图来适应相关使用场景。

    16610
    领券