首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

为扩充的Pascal Voc数据集向原始图像添加类标签

是指在Pascal Voc数据集的基础上,为原始图像添加相应的类别标签信息。Pascal Voc数据集是一个常用的计算机视觉数据集,包含了20个不同类别的物体,如人、车、飞机等。为了提高数据集的多样性和数量,可以通过向原始图像添加类标签来扩充数据集。

添加类标签的方法可以通过在图像上绘制边界框或者像素级的分割标签来实现。边界框标签是指在图像中框选出物体的位置,并用矩形框表示,同时标注物体的类别。像素级的分割标签是指对图像中的每个像素进行标注,将属于同一类别的像素标记为相同的标签值。

添加类标签的优势是可以增加数据集的多样性和数量,提高模型的泛化能力和鲁棒性。通过扩充数据集,可以更好地训练深度学习模型,提高物体检测、分割和识别等任务的准确性和效果。

应用场景包括但不限于物体检测、图像分割、目标识别等计算机视觉任务。在实际应用中,可以利用扩充的Pascal Voc数据集进行模型训练和评估,从而提升计算机视觉相关应用的性能和效果。

腾讯云相关产品和产品介绍链接地址:

  • 腾讯云图像识别API:https://cloud.tencent.com/product/ai/imagerecognition
  • 腾讯云视觉智能(AI):https://cloud.tencent.com/product/vision
  • 腾讯云机器学习平台:https://cloud.tencent.com/product/tiia
  • 腾讯云数据万象(CI):https://cloud.tencent.com/product/ci
页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 做语义分割不用任何像素标签,UCSD、英伟达在ViT中加入分组模块,入选CVPR2022

    机器之心报道 机器之心编辑部 生成效果的确很惊艳。 视觉场景是由有语义意义的像素组构成。在深度学习的概念出现之前,业界就已经使用经典的视觉理解方法对像素分组和识别进行深入研究。自下而上分组的思想是:首先将像素组织成候选组,然后用识别算法模块处理每个分组。这种思路已经成功应用于超像素图像分割、以及目标检测和语义分割的区域构建。除了自下而上的推理,识别过程中自上而下的反馈信号,能够更好地完成视觉分组。 随着深度学习时代的到来,显式分组和识别的思想,在端到端的训练系统中已经不再那么泾渭分明,而是更紧密地耦合在一起

    03

    Single-Shot Refinement Neural Network for Object Detection

    对于目标检测,两阶段方法(如Faster R-CNN)的准确率最高,而单阶段方法(如SSD)的效率较高。为了在继承两种方法优点的同时克服它们的缺点,本文提出了一种新的单阶段检测器,称为RefineDet,它比两阶段方法具有更好的精度,并保持了与单阶段方法相当的效率。RefineDet由两个相互连接的模块组成,即锚点细化模块和目标检测模块。具体来说,前者的目的是(1)过滤掉负锚点,减少分类器的搜索空间,(2)粗调锚点的位置和大小,为后续回归器提供更好的初始化。后一个模块以改进后的锚为输入,进一步改进回归,预测多类标签。同时,我们设计了一个传输连接块来传输锚点细化模块中的特征,以预测目标检测模块中目标的位置、大小和类标签。多任务丢失功能使我们能够以端到端方式训练整个网络。在PASCAL VOC 2007、PASCAL VOC 2012和MS COCO上的大量实验表明,RefineDet能够以高效的方式实现最先进的检测精度。

    01

    深度学习应用篇-计算机视觉-语义分割综述[5]:FCN、SegNet、Deeplab等分割算法、常用二维三维半立体数据集汇总、前景展望等

    目前,计算机视觉是深度学习领域最热门的研究领域之一。从广义上来说,计算机视觉就是要“赋予机器自然视觉的能力”。实际上,计算机视觉本质上就是研究视觉感知问题,其目标就是对环境的表达和理解,核心问题是研究如何对输入的图像信息进行组织,对物体和场景进行识别,进而对图像内容给予解释。更进一步来说,计算机视觉就是研究如何让计算机利用摄像头等机器设备实现和人类一样“看”的能力,对目标进行分割、分类、识别、跟踪、判别决策。计算机视觉是一个跨领域的交叉学科,包括计算机科学(图形、算法、理论、系统、体系结构),数学(信息检索、机器学习),工程学(机器人、语音、自然语言处理、图像处理),物理学(光学 ),生物学(神经科学)和心理学(认知科学)等等。许多科学家认为,计算机视觉为人工智能的发展开拓了道路。

    03

    Deep Residual Learning for Image Recognition

    更深层次的神经网络更难训练。我们提出了一个残差学习框架来简化网络的训练,这些网络比以前使用的网络要深入得多。我们显式地将层重新表示为参考层输入的学习剩余函数,而不是学习未引用的函数。我们提供了全面的经验证据表明,这些剩余网络更容易优化,并可以从大幅增加的深度获得精度。在ImageNet数据集上,我们评估了高达152层的剩余网—比VGG网[41]深8×,但仍然具有较低的复杂性。这些残差网的集合在ImageNet测试集上的误差达到3.57%,该结果在ILSVRC 2015年分类任务中获得第一名。我们还对CIFAR-10进行了100层和1000层的分析。在许多视觉识别任务中,表征的深度是至关重要的。仅仅由于我们的深度表示,我们获得了28%的相对改进的COCO对象检测数据集。深度残差网是我们参加ILSVRC & COCO 2015竞赛s1的基础,并在ImageNet检测、ImageNet定位、COCO检测、COCO分割等方面获得第一名。

    01

    Rich feature hierarchies for accurate object detection and semantic segmentation

    在PASCAL VOC标准数据集上测量的目标检测性能在最近几年趋于稳定。性能最好的方法是复杂的集成系统,它通常将多个低层图像特性与高层上下文结合起来。在本文中,我们提出了一种简单、可扩展的检测算法,相对于之前VOC 2012的最佳检测结果,平均平均精度(mAP)提高了30%以上,达到了53.3%。我们的方法结合了两个关键的方法:(1)为了定位和分割目标,可以一次将高容量应用卷积神经网络(cnn)自下而上的区域建议(2)标记的训练数据稀缺时,监督为辅助训练的任务,其次是特定于域的微调,收益率显著的性能提升。由于我们将区域建议与CNNs相结合,我们将我们的方法称为R-CNN:具有CNN特性的区域。我们还将R-CNN与OverFeat进行了比较,OverFeat是最近提出的一种基于类似CNN架构的滑动窗口检测器。在200类ILSVRC2013检测数据集上,我们发现R-CNN比OverFeat有较大的优势。

    02

    YOLO再战大雾天气 | IA-YOLO数据增强+感知损失,做到大雾天气无痛即可完成YOLO检测器的场景升级

    基于图像增强的技术试图生成无雾图像。然而,从有雾图像中恢复无雾图像比在雾天图像中检测物体要困难得多。另一方面,基于领域适应的方法并不使用目标领域中的标记数据集。这两类方法都在尝试解决一个更难的问题版本。 FogGuard特别设计用来补偿场景中存在的雾天条件,确保即使在雾天也能保持稳健的性能。作者采用YOLOv3作为基准目标检测算法,并引入了一种新颖的“教师-学生”感知损失,以提高雾天图像中的目标检测准确度。 在如PASCAL VOC和RTTS等常见数据集上的广泛评估中,作者展示了作者网络性能的提升。作者证明,FogGuard在RTTS数据集上达到了69.43%的mAP,而YOLOv3为57.78%。 此外,作者表明,尽管作者的训练方法增加了时间复杂度,但在推理过程中与常规的YOLO网络相比,它并没有引入任何额外的开销。

    01

    Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

    最先进的目标检测网络依赖于区域建议算法来假设目标位置。SPPnet和Faster R-CNN等技术的进步,降低了检测网络的运行时间,但是暴露了区域提案计算的瓶颈。在这项工作中,我们引入了一个与检测网络共享全图像卷积特性的区域建议网络(RPN),从而实现了几乎免费的区域建议。RPN是一个完全卷积的网络,它同时预测每个位置的目标边界和目标得分。对RPN进行端到端训练,生成高质量的区域建议,Faster R-CNN对其进行检测。通过共享卷积特性,我们进一步将RPN和Faster R-CNN合并成一个单独的网络——使用最近流行的具有“Attention”机制的神经网络术语,RPN组件告诉统一的网络去哪里看。对于非常深的VGG-16型号,我们的检测系统在GPU上帧率为5帧(包括所有步骤),同时在PASCAL VOC 2007、2012和MS COCO数据集上实现了最先进的目标检测精度,每张图像只有300个proposal。在ILSVRC和COCO 2015年的比赛中,Faster R-CNN和RPN是在多个赛道上获得第一名的基础。

    02
    领券