首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

想知道机器学习掌握的怎么样了吗?这有一份自测题(附答案和解析)

人类对于自动化和智能化的追求一直推动着技术的进步,而机器学习这类型的技术对各个领域都起到了巨大的作用。随着时间的推移,我们将看到机器学习无处不在,从移动个人助理到电子商务网站的推荐系统。即使作为一个外行,你也不能忽视机器学习对你生活的影响。 引言 本次测试是面向对机器学习有一定了解的人。参加测试之后,参与者会对自己的机器学习方面知识有更深刻的认知。 目前,总共有 1793 个参与者参与到了测试中。一个专门为机器学习做的测试是很有挑战性的,我相信你们都已经跃跃欲试,所以,请继续读下去。 那些错过测试的人,

012
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Bootstrap中datetimepicker日期控件1899年问题解决

    最近在开发项目的过程中,遇到一个很尴尬的问题。我们项目一直采用的是angular+bootstrap,日期控件用的是bootstrap中的datetimepicker,这个日期控件存在一个bug,当用户输入日期时,日期控件会自动跳到1899年,这个用户体验特别不好,一不小心就可能点错了。因为我们的项目中涉及的日期非常多,所以领导强烈要求我们前端解决这个问题,并且需要支持yyyy-MM-dd、yyyy/MM/dd、yyyy.MM.dd、yyyyMMdd等四种格式的兼容。作为前端中的一员,我不遗余力去从网上找答案,在百度上找了好几天,没有结果。就在最后,我忽然想到了github,在这上面我找到了我想要的答案。下面和大家分享一下。

    04

    对于语言模型的推理问题,一步步来会更好

    今天为大家介绍的是来自Openai研究团队的一篇提高语言模型推理能力的论文。近年来,大型语言模型在进行复杂多步推理方面的能力有了显著提升。然而,即使是最先进的模型仍然经常产生逻辑错误。为了训练更可靠的模型,作者可以采用结果监督或过程监督两种方法。结果监督为最终结果提供反馈,而过程监督则为每个中间推理步骤提供反馈。考虑到训练可靠模型的重要性以及人工反馈的高成本,仔细比较这两种方法非常重要。最近的研究已经开始比较这两种方法,但仍然存在许多问题。Openai进行了关于这个问题的研究,发现对于训练模型解决具有挑战性的MATH数据集中的问题,过程监督明显优于结果监督。

    01

    测试数据科学家聚类技术的40个问题(能力测验和答案)(上)

    介 绍 创造出具有自我学习能力的机器——人们的研究已经被这个想法推动了十几年。如果要实现这个梦想的话,无监督学习和聚类将会起到关键性作用。但是,无监督学习在带来许多灵活性的同时,也带来了更多的挑战。 在从尚未被标记的数据中得出见解的过程中,聚类扮演着很重要的角色。它将相似的数据进行分类,通过元理解来提供相应的各种商业决策。 在这次能力测试中,我们在社区中提供了聚类的测试,总计有1566人注册参与过该测试。如果你还没有测试过,通过阅读下面的文章,你可以统计一下自己能正确答对多少道题。 总结果 下面是分数的分布

    04

    【论文解读】让我们逐步验证

    本文简要介绍了大模型热门论文“Let’s Verify Step by Step ”的相关工作。近年来,大型语言模型在执行复杂的多步骤推理的能力上有了显著的提高。然而,即使是最先进的模型也会经常产生逻辑错误。为了训练更可靠的模型, 可以转向为最终结果提供反馈的结果监督,或者转向为每个中间推理步骤提供反馈的过程监督。考虑到训练可靠模型的重要性,并且考虑到人工反馈的高成本,仔细比较这两种方法是很重要的。最近的工作已经开始了这种比较,但仍存在许多问题。论文进行了自己的调查,发现在解决具有挑战性的MATH数据集的问题时,过程监督明显优于结果监督。论文的过程监督模型解决了来自数学测试集的一个代表性子集中的78%的问题。此外,论文还发现,主动学习显著提高了过程监督的有效性。为了支持相关研究,论文还发布了PRM800K,这是一个包含80万 step-level人类反馈标签的完整数据集,用于训练论文的最佳反馈模型。

    01
    领券