人类对于自动化和智能化的追求一直推动着技术的进步,而机器学习这类型的技术对各个领域都起到了巨大的作用。随着时间的推移,我们将看到机器学习无处不在,从移动个人助理到电子商务网站的推荐系统。即使作为一个外行,你也不能忽视机器学习对你生活的影响。 引言 本次测试是面向对机器学习有一定了解的人。参加测试之后,参与者会对自己的机器学习方面知识有更深刻的认知。 目前,总共有 1793 个参与者参与到了测试中。一个专门为机器学习做的测试是很有挑战性的,我相信你们都已经跃跃欲试,所以,请继续读下去。 那些错过测试的人,
本文最初发表于 Towards Data Science 博客,经原作者 Santiago Valdarrama 授权,InfoQ 中文站翻译并分享。
随着大型语言模型(LLM)的发展,人工智能正处于变革的爆发期。众所周知,LLM 可用于商业、科学和金融等应用,因而越来越多的公司(OpenAI、AI21、CoHere 等)都在提供 LLM 作为基础服务。虽然像 GPT-4 这样的 LLM 在问答等任务中取得了前所未有的性能,但因为其高吞吐量的特质,使得它们在应用中非常昂贵。
作者 | Santiago Valdarrama 译者 | Sambodhi 策划 | 刘燕 本文最初发表于 Towards Data Science 博客,经原作者 Santiago Valdarrama 授权,InfoQ 中文站翻译并分享。 和很多人的想法相反,性能最好的机器学习模型未必是最好的解决方案。在 Kaggle 竞赛中,性能是你需要的全部。实际上,这也是另一个需要考虑的因素。下面让我们从模型的性能开始,并重新考虑一些其他考虑因素,以便在选择模型来解决问题时牢记在心。 1性能 模型结果的质量是
在赫尔辛基大学AI基础教程:搜索和游戏(2.3节)中,我们讨论了搜索以及它在完全信息时的应用 ,比如像国际象棋这样的游戏。但是,在现实世界中,事情很少这样清晰。
人工智能一直助力着科技发展,新兴的机器学习正推动着各领域的进步。如今,机器学习的方法已经无处不在—从手机上的语音助手到商业网站的推荐系统,机器学习正以不容忽视的速度闯入我们的生活。以下测试题可以粗略的检测你对机器学习的了解和掌握程度。 1.以下哪一种方法最适合在n(n>1)维空间中做异常点检测。 A 正态分布图 B 盒图 C 马氏距离 D 散点图 答案:C 马氏距离是是一种有效的计算两个未知样本集的相似度的多元计量方法,以卡方分布为基础,表示数据的协方差距离。与欧氏距离不同的是它考虑到各种特性之间的联
B. pg_replication_slots视图中lag字段值表示当前与主库之间的延迟
每个星期一的英语上机对于大家来说是有一点痛苦的,大家还沉浸在双休日的休息中,有的人可能星期天晚上很晚才睡,或者说根本没睡(第二天凌晨睡的 ), 早上起来就十分没有精神,在这种情况下还要进行英语上机。这样一来不仅做不好,还会使大家对上机产生一种畏惧感。如果能适当的增加自己的正确率,又能挺高自己的自信心(当然,前提是作业你都是自己做的),那么,我们对上机的畏惧就不会有那么深了。因此,本文将介绍一种方法在上机之前获取选择题的答案。
人工智能一直助力着科技发展,新兴的机器学习正推动着各领域的进步。如今,机器学习的方法已经无处不在—从手机上的语音助手到商业网站的推荐系统,机器学习正以不容忽视的速度闯入我们的生活。以下测试题可以粗略的检测你对机器学习的了解和掌握程度。 本文接上篇《机器学习测试题(上)》,有对机器学习有兴趣的小伙伴可自行测试。 21.在一个包含5000个特征及超过一百万个观测值的数据集上建立一个机器学习的模型,下面哪种方法能更高效地训练模型? A.从数据集中随机抽取样本来建立模型 B.使用在线学习算法 C.使用主成分分
本篇论文探讨了RAG系统中的检索对系统性能的影响。与传统的大型语言模型相比,RAG系统通过引入外部数据提高了其生成能力。然而,大多数关于RAG系统的研究主要集中在语言模型的生成方面,而忽略了IR的作用。通过对各种元素进行评估,如文档的相关性、位置和数量等,发现包含不相关文档可以意外地提高准确性超过30%。
最近的大型语言模型(Large language mode,LLM)正在变得越来越擅长推理,背后的一个关键技术是思维链(chain-of-thought,CoT),简单来说,CoT 可以让 LLM 模拟人类思考的过程,帮助大型语言模型生成一个推理路径,将复杂的推理问题分解为多个简单的步骤,而不仅仅只是一个最终答案,从而增强模型的推理能力。
在构建大语言模型应用程序时通常有两种常见的方法来整合专有和特定领域的数据:检索增强生成和微调。检索增强生成通过外部数据增强提示,而微调将额外的知识整合到模型本身中。不过,对这两种方法的优缺点了解的却不够充分。
本文作者 Saurav Kaushik 是数据科学爱好者,还有一年他就从新德里 MAIT 毕业了,喜欢使用机器学习和分析来解决复杂的数据问题。看看以下40道题目,测试下你能答对多少。 作者 | Saurav Kaushik 翻译 | AI科技大本营(rgznai100) 介绍 创造出具有自我学习能力的机器——人们的研究已经被这个想法推动了十几年。如果要实现这个梦想的话,无监督学习和聚类将会起到关键性作用。但是,无监督学习在带来许多灵活性的同时,也带来了更多的挑战。 在从尚未被标记的数据中得出见解的过程
最近在开发项目的过程中,遇到一个很尴尬的问题。我们项目一直采用的是angular+bootstrap,日期控件用的是bootstrap中的datetimepicker,这个日期控件存在一个bug,当用户输入日期时,日期控件会自动跳到1899年,这个用户体验特别不好,一不小心就可能点错了。因为我们的项目中涉及的日期非常多,所以领导强烈要求我们前端解决这个问题,并且需要支持yyyy-MM-dd、yyyy/MM/dd、yyyy.MM.dd、yyyyMMdd等四种格式的兼容。作为前端中的一员,我不遗余力去从网上找答案,在百度上找了好几天,没有结果。就在最后,我忽然想到了github,在这上面我找到了我想要的答案。下面和大家分享一下。
大模型的「幻觉」问题马上要有解了?威斯康星麦迪逊大学和谷歌的研究人员最近开发了一个名为ASPIRE的系统,可以让大模型对自己的输出给出评分。
威斯康星麦迪逊大学和谷歌的研究人员最近开发了一个名为ASPIRE的系统,可以让大模型对自己的输出给出评分。
今天为大家介绍的是来自Openai研究团队的一篇提高语言模型推理能力的论文。近年来,大型语言模型在进行复杂多步推理方面的能力有了显著提升。然而,即使是最先进的模型仍然经常产生逻辑错误。为了训练更可靠的模型,作者可以采用结果监督或过程监督两种方法。结果监督为最终结果提供反馈,而过程监督则为每个中间推理步骤提供反馈。考虑到训练可靠模型的重要性以及人工反馈的高成本,仔细比较这两种方法非常重要。最近的研究已经开始比较这两种方法,但仍然存在许多问题。Openai进行了关于这个问题的研究,发现对于训练模型解决具有挑战性的MATH数据集中的问题,过程监督明显优于结果监督。
前几天使用vue-element-admin框架开发了一个简单的后台管理系统,在开发的过程之中也遇到了一些功能,以及对饿了么框架的使用遇到的一些问题,如何解决问题,记录一下。
译自 Evaluations for Retrieval Augmented Generation: TruLens + Milvus 。
VS集成开发环境,字符集选择“使用多字节字符集”和“使用Unicode字符集”的直接区别就是:编译器是否增加了宏定义——UNICODE。当选择“使用Unicode字符集”时,编译器会增加宏定义——UNICODE;而选择“使用多字节字符集”时,编译器则不会增加宏定义——UNICODE。
EM 是 exact match 的简称,所以就很好理解,em 表示预测值和答案是否完全一样。
看到一段关于“三门问题”的视频,第一感觉就是视频的结论有误。本想一笑了之,但看了评论,迷惑了:三门问题的答案到底是什么?
数据工程在指令调优中的有着关键作用。当选择适当时,只需要有限的数据就可以实现卓越的性能。然而,什么是良好的指令调优数据以进行对齐,以及如何自动有效地选择数据仍需研究。本文深入研究了对齐的自动数据选择策略。在复杂性、质量和多样性三个维度上评估数据。并提出DEITA(Data-Efficient Instruction Tuning for Alignment),一个从LLaMA和Mistral模型中微调的模型
这个秋天高中和大学的老师们在准备开学之际,注意:帮学生打分数的工作将会轻松不少。 一名加州大学柏克莱分校的教授和三名前研究生正在对一项人工智能技术进行最后调整,这项技术可以将学生们的答案进行集合分类,再一起打分数。 这项正在进行测试的功能采用人工智能技术,今年秋天将正式推出在线打分数程序 Gradescope 的最新功能。研究团队两年前成立公司时推出这项 app,目的在遏止作弊歪风。将打好分数的试卷制作成数位纪录档案,让学生难以修改原先写好的答案,没有打错分数的借口。 Gradescope 在跟多个大学课程
大数据文摘作品,转载要求见文末 编译 | 吴蕾,寒小阳 简介 回归技术不仅包含线性和逻辑回归方面知识,它还体现了多种建模和分析变量的能力。此项技能测试是为了评估你在众多回归技术方面的概念和运用能力。 此次共有1845名选手参与测试,我能确信,这是在回归领域内公认的最佳测试集。 如果你没能参与,确实是错过了实时考试的机会,那也不必遗憾,这里将公布考题和答案,你可以看看自己掌握了多少。 总体分数 下图展示了整体分数的分布情况,可以帮助你评估自己的成绩。 你能够在此处(https://datahack.an
,由于必须同时满足「合法移动(有效下标)」和「能够得分」,我们仅考虑范围更小(更严格)由
You have used 1 of 1 submissions 单选题 (1points)
在某种意义上,你可以把机器学习算法看作有很多刀剑的军械库。里边有各种各样的工具,你要做的,就是得学会在对的时间使用对的工具。举个例子,如果把“回归”看作是一把剑,它可以轻松地将一部分数据大卸八块,但面对高度复杂的数据时却无能为力。相反,支持向量机就像一把锋利的小刀--它适用于规模更小的数据集,这并不代表这把刀威力不够,相反的,它在构建模型时表现的非常强大。
介 绍 创造出具有自我学习能力的机器——人们的研究已经被这个想法推动了十几年。如果要实现这个梦想的话,无监督学习和聚类将会起到关键性作用。但是,无监督学习在带来许多灵活性的同时,也带来了更多的挑战。 在从尚未被标记的数据中得出见解的过程中,聚类扮演着很重要的角色。它将相似的数据进行分类,通过元理解来提供相应的各种商业决策。 在这次能力测试中,我们在社区中提供了聚类的测试,总计有1566人注册参与过该测试。如果你还没有测试过,通过阅读下面的文章,你可以统计一下自己能正确答对多少道题。 总结果 下面是分数的分布
上海交通大学GAIR团队最新研究表明,在常识理解、数学推理和代码生成等复杂任务中,AI经过多轮“自我提升”后,可能会出现一种称为“自我提升逆转”(self-improvement reversal)的现象。
到此为止,已经很明显完善提示有助于在不同任务上获得更好的结果。这就是提示工程的整体理念。
现在电视台有一种节目叫做超级英雄,大概的流程就是每位选手到台上回答主持人的几个问题,然后根据回答问题的
答案:ƒ Object() { [native code] } False true false 1
一位叫 Spencer Greenberg (以下简称S先生)的数学家,最近和GPT-3做了一番交谈,内容实属精彩,先来一睹为快。
作者:Dishashree Gupta 翻译:闵黎 卢苗苗 校对:丁楠雅 本文长度为6500字,建议阅读20分钟 本文是Analytics Vidhya所举办的在线统计学测试的原题,有志于成为数据科学家或者数据分析师的同仁可以以这41个问题测试自己的统计学水平。 介绍 统计学是数据科学和任何数据分析的基础。良好的统计学知识可以帮助数据分析师做出正确的商业决策。一方面,描述性统计帮助我们通过数据的集中趋势和方差了解数据及其属性。另一方面,推断性统计帮助我们从给定的数据样本中推断总体的属性。了解描述性和
99%的焦虑都来自于虚度时间和没有好好做事,所以唯一的解决办法就是行动起来,认真做完事情,战胜焦虑,战胜那些心里空荡荡的时刻,而不是选择逃避。不要站在原地想象困难,行动永远是改变现状的最佳方式
选自 Analytics Vidhya 作者:ANKIT GUPTA 机器之心编译 参与:机器之心编辑部 目前机器学习是最抢手的技能之一。如果你是一名数据科学家,那就需要对机器学习很擅长,而不只是三脚猫的功夫。作为 DataFest 2017 的一部分,Analytics Vidhya 组织了不同的技能测试,从而数据科学家可以就这些关键技能进行自我评估。测试包括机器学习、深度学习、时序问题以及概率。这篇文章将给出机器学习测试问题的解答。你可以通过链接获得其他测试问题及解答。 深度学习:https://ww
目前机器学习是最抢手的技能之一。如果你是一名数据科学家,那就需要对机器学习很擅长,而不只是三脚猫的功夫。作为 DataFest 2017 的一部分,Analytics Vidhya 组织了不同的技能测试,从而数据科学家可以就这些关键技能进行自我评估。测试包括机器学习、深度学习、时序问题以及概率。这篇文章将给出机器学习测试问题的解答。你可以通过链接获得其他测试问题及解答。
你每收到一个顾客的投诉,就有大约26个人对你的公司不满,但是他们选择沉默。如果你不采取适当的行动,你很可能会失去这些客户。
搜狗公司 & 中科院自动化所在信息检索领域顶级会议 SIGIR 2019 (CCF A 类会议)中联合提出了一个基于文档门控机制的阅读算法,并将其用在开放域问答中,在很多开放域问答应用中取得了最好的效果。搜狗公司为这篇论文《Document Gated Reader for Open-Domain Question Answering》撰写了中文解读文章如下。
【AI100 导读】本次测试的重点主要集中在概念、聚类基本原理以及各种技术的实践知识等方面。本文为下部,包括21-40题。上部请查看: 测试数据科学家聚类技术的40个问题(能力测验和答案)(上) Q
本文简要介绍了大模型热门论文“Let’s Verify Step by Step ”的相关工作。近年来,大型语言模型在执行复杂的多步骤推理的能力上有了显著的提高。然而,即使是最先进的模型也会经常产生逻辑错误。为了训练更可靠的模型, 可以转向为最终结果提供反馈的结果监督,或者转向为每个中间推理步骤提供反馈的过程监督。考虑到训练可靠模型的重要性,并且考虑到人工反馈的高成本,仔细比较这两种方法是很重要的。最近的工作已经开始了这种比较,但仍存在许多问题。论文进行了自己的调查,发现在解决具有挑战性的MATH数据集的问题时,过程监督明显优于结果监督。论文的过程监督模型解决了来自数学测试集的一个代表性子集中的78%的问题。此外,论文还发现,主动学习显著提高了过程监督的有效性。为了支持相关研究,论文还发布了PRM800K,这是一个包含80万 step-level人类反馈标签的完整数据集,用于训练论文的最佳反馈模型。
前言 贪心是人类自带的能力,贪心算法是在贪心决策上进行统筹规划的统称。 比如一道常见的算法笔试题----跳一跳: 有n个盒子排成一行,每个盒子上面有一个数字a[i],表示最多能向右跳a[i]个盒子;
Salesforce最新论文提出了一个可处理多项自然语言处理的通用模型:decaNLP,处理机器翻译、文本分类等NLP任务统统不在话下!
本项目基于chatterbot0.8.7来开发,但不仅于此。让我们先对chatterbot做一个简单的了解。
前段时间,谷歌发布了对标 OpenAI GPT 模型的竞品 ——Gemini。这个大模型共有三个版本 ——Ultra(能力最强)、Pro 和 Nano。研究团队公布的测试结果显示,Ultra 版本在许多任务中优于 GPT4,而 Pro 版本与 GPT-3.5 不相上下。
领取专属 10元无门槛券
手把手带您无忧上云