近期,多模态大模型(LMMs)在视觉语言任务方面展示了令人印象深刻的能力。然而,由于多模态大模型的回答具有开放性,如何准确评估多模态大模型各个方面的性能成为一个迫切需要解决的问题。
光学字符识别(OCR)是目前应用最为广泛的视觉AI技术之一。随着OCR技术在产业应用的快速发展,现实场景对OCR提出新的需求:从感知走向认知——OCR不但需要认识文字,也要进一步理解文字。因此,结构化逐渐成为OCR产业应用的核心技术之一,旨在快速且准确地分析卡证、票据、档案图像等富视觉数据中的结构化文字信息,并对关键数据进行提取。OCR结构化技术通常要解决两个高频应用任务类型:
参加这次比赛的初衷是作为机器学习课程的大作业,这两天写了课程报告,所以将报告内容修改了一下进行分享。 我所在的团队(“中国国家跳水队”,排名如队名,一度严重跳水)获得了初赛第3, 复赛第9, 决赛第6的成绩,正好擦边获得了三等奖。(小编:比赛的时候取个好名字有多重要:) 主要分为三个部分,分别为比赛背景介绍,团队主要方案介绍,其他方案介绍。其中最后一部分包含了一些其他队伍在决赛赛后分享时提到的思路。 比赛背景介绍 此部分主要内容摘自比赛官网,详细内容见比赛官网 https://biendata.com/co
有个需求,需要从一张图片中识别出中文,通过python来实现,这种这么高大上的黑科技我们普通人自然搞不了,去github找了一个似乎能满足需求的开源库-tesseract-ocr: Tesseract的OCR引擎目前已作为开源项目发布在Google Project,其项目主页在这里查看https://github.com/tesseract-ocr, 它支持中文OCR,并提供了一个命令行工具。python中对应的包是pytesseract. 通过这个工具我们可以识别图片上的文字。 笔者的开发环境如下: ma
首先鸣谢 @samayala22(加拿大)、@manjrekarom (印度)等社区同学为本文提及的技术点做出的卓越贡献 !期待更多社区伙伴加入算法优化工作中来,同时也希望这两位小伙伴早日学会中文,读懂我们的致谢~
前者使用文本的字符、位置和掩码图像等输入来为文本生成或编辑生成潜在特征。后者采用OCR模型将笔划数据编码为嵌入,与来自分词器的图像描述嵌入相结合,以生成与背景无缝融合的文本。作者在训练中采用了文本控制扩散损失和文本感知损失,以进一步提高写作准确性。据作者所知,AnyText是第一个解决多语言视觉文本生成的工作。 值得一提的是,AnyText可以与社区现有的扩散模型相结合,用于准确地渲染或编辑文本。经过广泛的评估实验,作者的方法在明显程度上优于其他所有方法。 此外,作者还贡献了第一个大规模的多语言文本图像数据集AnyWord-3M,该数据集包含300万个图像-文本对,并带有多种语言的OCR注释。基于AnyWord-3M数据集,作者提出了AnyText-benchmark,用于评估视觉文本生成准确性和质量。 代码:https://github.com/tyxsspa/AnyText
OCR技术有着丰富的应用场景,包括已经在日常生活中广泛应用的面向垂类的结构化文本识别,如车牌识别、银行卡信息识别、身份证信息识别、火车票信息识别等等,此外,通用OCR技术也有广泛的应用,如在视频场景中,经常使用OCR技术进行字幕自动翻译、内容安全监控等等,或者与视觉特征相结合,完成视频理解、视频搜索等任务。
作者 | Fedor Borisyuk,Albert Gordo,Viswanath Sivakumar
频频登上Github Trending和Paperswithcode 日榜月榜第一,
文字是传递信息的高效途径,利用OCR技术提取文本信息是各行业向数字智能化转型的第一步。与此同时,针对OCR提取的海量文本信息,利用NLP技术进一步加工提取、分析理解后才能最大化发挥文本信息的价值。NLP技术可以提升OCR准确率,并从文本中抽取关键信息、构建知识图谱,搭建检索、推荐、问答系统等。
基于图像分类,在VGG16模型的基础上,训练0、90、180、270度检测的分类模型. 详细代码参考angle/predict.py文件,训练图片8000张,准确率88.23%
光学字符识别和手写文本识别是人工智能领域里非常经典的问题。OCR 很简单,就是将文档照片或场景照片转换为机器编码的文本;而 HTR 就是对手写文本进行同样的操作。作者在文章中将这个问题分解成了一组更小型的问题,并制作了如下的流程图。
要说生活里最常见、最便民的AI应用技术,OCR(Optical Character Recognition,光学字符识别)当属其中之一。寻常到日常办理各种业务时的身份证识别,前沿到自动驾驶车辆的路牌识别,都少不了它的加持。
GPT-SoVits 是一款强大的支持少量语音转换、文本到语音的音色克隆模型。支持中文、英文、日文的语音推理。
OCR(光学字符识别)是是指对文本资料的图像文件进行分析识别处理,获取文字及版面信息的过程。目前,这项技术在拍照搜题、拍照翻译等应用中得到广泛使用。
随着人工智能技术的逐渐成熟,计算机视觉、语音、自然语言处理等技术在金融行业的应用从广度和深度上都在加速,这不仅降低了金融机构的运营和风险成本,而且有助于提升客户的满意度,比如:利用OCR技术快速处理海量表格做信息结构化抽取和存储,大幅提升从业人员工作效率;利用NLP技术实现智能问答解决方案,帮助用户即使没有复杂的金融背景知识也能快速找到自己需要的信息。
牛小明为四川长虹电器股份有限公司的资深专家,也跟CV君一样曾供职于华为,是两个可爱宝贝的父亲,研究领域涉及图像、语音、文本信号处理和机器人等,Tel:15882855846; Email: xiaoming1.niu@changhong.com
2019 DCIC已经开赛一个月了,据说华为赛题比较有难度,小编特此搜罗到一位妹子大佬的Baseline,为各位参赛者提供思路~
随着人工智能的热度上升,图像识别这一细分领域也渐渐被人们所关注。在很多公司的业务中,有很多需要对图片进行识别的需求。为了帮助业务实现对这些图片、文档的识别和结构化,业界进行了一系列的实践和探索,最终确定了一些可行的方法。实践过程中,可能遇到过一系列问题和难点。本次直播分享,我们将结合目前的业务需求,说说爱奇艺在探索中遇到的痛点和难点以及识别技术中的一些细节。
本文对VLM领域多个任务的常见数据集和benchmark做了简要介绍,以方便读友看论文时参考。
这里的PaddleOCR(use_angle_cls=True, lang='ch')中的lang可以是很多种语言,比如`ch`, `en`, `fr`, `german`, `korean`, `japan`。
本文介绍了腾讯AI实验室在计算机视觉领域的研究进展,包括人脸检测、人脸识别、OCR等方面,并分享了在ICDAR、FDDB等竞赛中的成果。团队秉承专业、服务、伙伴的理念,不断夯实基础,做有原创性的研究和坚实的工作,为伙伴部门提供高品质的技术支持。
在进行文字识别时候,需要使用的数据集样式为一张含有文本的图片以及对应文本内容的标签。但是一般而言,实际情况是构建的文本字典中,每个字至少要出现200次才能有好的识别效果,因此,先对所有的label进行单字统计,看每个字出现的个数是否超过200次,如果不满足,则需要进一步收集数据。
在本篇博文中,我们深入探讨了六种主流的Java OCR(光学字符识别)技术解决方案,旨在为Java开发者提供全面的技术对比和实用指南。从开源神器Tesseract到云服务巨头Google Vision API,再到专业的OCR库如ABBYY,每种解决方案都将通过依赖引入、代码实例、GitHub上的数据集链接、应用场景对比以及优缺点分析进行详细介绍。无论是对于OCR新手还是经验丰富的开发大佬,本文都力求提供一份准确、易读、内容丰富的技术分享,确保每位读者都能找到满足其项目需求的最佳OCR解决方案。
文章目录 《这是我见过最强的OCR开源算法模型了》 前言 一、来吧,展示! 二、OCR简介 (一)什么是OCR (二)应用举例 (三)OCR难点 三、PaddleOCR介绍 (一)总结介绍 (二)相关地址总结 四、PaddleOCR的使用 (一)PaddleOCR项目介绍 (二)测试自己的数据 五、多维度对比分析 (一)教程的完备性对比 (二)易用性对比 (三)运行速度对比 (四)精度对比 (五)多角度对比 (六)其他分析 六、总结 《这是我见过最强的OCR开源算法模型了》 前言 最近参加“中国软件杯”的一
白蛇: 白纸黑字的扫描文档识别技术已经很成熟,而自然场景图像文本识别的效果还不理想。倾斜字、艺术字、变形字、模糊字、形似字、残缺字、光影遮蔽、多语言混合文本等应用落地面临的技术难题还没被彻底解决。
本文介绍了腾讯数平精准推荐团队的OCR识别算法,包括识别算法的演进之路以及4个代表性方法。
github官网:https://github.com/tesseract-ocr/tesseract
论文:Vary: Scaling up the Vision Vocabulary for Large Vision-Language Models 项目主页:https://varybase.github.io/
经常在网上查询文档资料的朋友一定有过这样的经历:好不容易找到了需要的内容,可是别说下载了,连复制一句话都不给复制的。尤其是 PDF 文档和图片类资料,就算我们充值下载到本地,很多也无法复制文本,只能手动敲出来。
好吧,我承认有那么一点标题党。不过说起标题党这事儿,咱先来看看支付BAO,最近几天搞得全国人民都不安心工作的“集五福”: 好(shua)好(hou)的“集五福”活动,怎么又叫 AR 了? 我们来让李老
0629封面.jpg 番外 青蛇: 姐, 图像文本检测和识别领域现在的研究热点是什么? 白蛇: 白纸黑字的扫描文档识别技术已经很成熟,而自然场景图像文本识别的效果还不理想。倾斜字、艺术字、变形字、模
OCR(Optical Character Recognition),译为光学字符识别,是指通过扫描等光学输入方式将各种票据、报刊、书籍、文稿及其它印刷品的文字转化为图像信息,再利用文字识别技术将图像信息转化为可以使用的计算机输入技术。
OCR,或光学字符识别,是最早的计算机视觉任务之一,因为在某些方面它不需要用到深度学习。因此,早在2012年深度学习热潮之前,OCR就有了各种不同的应用,有些甚至可以追溯到1914年 。
轻量级文字识别技术创新大赛是第二届CSIG图像图形技术挑战赛赛题之一,由百度公司承办。本赛题以文字识别为主题,要求参赛选手建立轻量级OCR模型,在兼顾准确率指标与模型大小的同时,重点考察选手的网络结构设计与训练调优能力,进一步推动中文场景文字识别算法与技术的突破。
作者:石文华 编辑:祝鑫泉 前 言 文章来源:https://hackernoon.com/latest-deep-learning-ocr-with-ker
为什么需要提取文本图像中的表格区域?如果你做过OCR或者有一定了解,那么考虑这样一个场景:一张论文截图,有图有表还有公式,如果直接做OCR,首先纯文本区域应该是没问题的,对于表格区域如果你用的ocr接口效果不错那么应该可以识别出表格中的文字并且保留它们的相对位置,但是表格的结构肯定是被抛弃了的。虽然乍一看去没什么不对,但是没有线的表格是没有灵魂的。。。。
许多自然场景中包含着丰富的文本信息,对于理解自然场景图像有着十分重要的作用。随着互联网和移动互联网技术飞速发展,许多新型的应用场景都需要利用自然场景中的丰富的文本信息,例如车牌检测和自动驾驶等。场景文本的分析与处理越来越成为计算机视觉领域的研究热点之一。
本文介绍了人脸识别和OCR识别技术的原理、应用和评测方法,并探讨了与腾讯云合作的政企项目应用情况。
视频多模态检索在蚂蚁内部有着广泛的应用。视频多模态检索具体包括两个方向,一个是视频-文本的语义检索,另外一个是视频-视频的同源检索。
Vary表现出了很大的潜力和极高的上限,OCR可以不再需要冗长的pipline,直接端到端输出,且可以按用户的prompt输出不同的格式如latex 、word 、markdown。
去年 4 月,威斯康星大学麦迪逊分校、微软研究院和哥伦比亚大学研究者共同发布了 LLaVA(Large Language and Vision Assistant)。尽管 LLaVA 是用一个小的多模态指令数据集训练的,却在一些样本上展示了与 GPT-4 非常相似的推理结果。10 月,LLaVA-1.5 重磅发布,通过对原始 LLaVA 的简单修改,在 11 个基准上刷新了 SOTA。
腾讯AI Lab计算机视觉中心人脸&OCR团队是2016年11月底开始组建和开展工作,我们以研发业界领先的算法为目标驱动,逐步克服人手不足、训练数据不足等困难,不断夯实基础,做既有原创性又能落地应用的国际前沿研究。在上一期(腾讯AI Lab 计算机视觉中心人脸&OCR团队近期成果介绍(1))中已经介绍了我们团队的一些研究成果,近期,我们团队有一些新的成果再和大家进一步分享。 1 人脸研究进展 人脸研究的两大关键任务是人脸检测与人脸识别。在上一期中,我们主要介绍了我们团队在人脸检测的两个国际权威评测平台(WI
内容一览:基于 PaddleOCR 进行集装箱箱号检测,缩短记录集装箱箱号的时间,提高港口装卸效率。
自然语言处理的目的是让机器试图理解和处理人类的文字。通常来说,人的语言是冗余的,含有歧义的,而机器是准确的,无歧义的,要让机器理解,这之间存在一个转换的问题。 通常做法的逻辑思路是,文本处理-->特征提取-->建立模型 文本处理是为了让数据干净,便于输入数学模型做处理。 文本处理的常见流程: 文本获取:下载数据集;通过爬虫程序从网上收集;通过SQL语句从数据库读取等等; 文本提取:从多种数据来源提取文本(如从网页、txt、pdf文件、OCR纸张的复印件、甚至语音识别),如用正则表达式提取文本,网页则用CS
背景 智慧金融在金融服务的业务流程中不断深入,金融行业数字化建设的过程除了面向外部客户的服务与销售外,行业内部的支持性系统也在随之升级。智能合规、智能运营广泛应用于企业内部财务管理系统、报销系统、核算系统以及审核系统等平台中,促使数据沉淀,加速流程效率,实现数字化建设闭环。 在智能运营覆盖的各个场景中,计算机视觉、自然语言处理、传统机器学习算法等人工智能技术充分应用。其中文字识别技术(OCR)作为计算机视觉的主要方向之一,其识别对象包括扫描合同、印章、卡证、表格与票据信息结构化,在业务办理、风险控制、内部数
集装箱号是指装运出口货物集装箱的箱号,填写托运单时必填此项。标准箱号构成基本概念:采用ISO6346(1995)标准
选自arXiv 作者:Tailing Yuan等 机器之心编译 参与:刘晓坤、李泽南 文字识别一直是图像处理领域中的重要任务。近日,清华大学与腾讯共同推出了中文自然文本数据集(Chinese Text in the Wild,CTW)——一个超大的街景图片中文文本数据集,为训练先进的深度学习模型奠定了基础。目前,该数据集包含 32,285 张图像和 1,018,402 个中文字符,规模远超此前的同类数据集。研究人员表示,未来还将在此数据集之上推出基于业内最先进模型的评测基准。 资源链接:https://ct
深度学习在OCR领域的成功应用需要大量数据,数平精准推荐团队利用图像增强,语义理解,生成对抗网络等技术生成高质足量的数据,为算法模型提供燃料,帮助OCR技术服务在多种业务场景中快速迭代,提升效果。
领取专属 10元无门槛券
手把手带您无忧上云