3:图的结构
大家学过离散数学都知道,一个图是由节点和节点之间的边组成的,在概率图模型里,每一个节点其实都可以表示为一个或者一组随机变量,而这些边可以看成是这些随机变量之间的概率依存关系,在离散数学里我们学过有向图和无向图...,而那些图和我们的图其实是一样的,只不过我们把这个有向的图模型叫做贝叶斯网络,而贝叶斯的有向无环图来表示因果关系,而无向图模型称为马尔科夫随机场,无向图表示变量间的相互作用,这些结构的区别导致了他们在建模和推断方面有了一些微妙的差别...我们得到的是最后的关系,式子里反应了变量之间的联系,当我们观察条件概率时,我们必须要指明那个是条件,如果我们采用的变量是节点,采用无向图这样的节点等价关系肯定是不能描述条件概率的,因为对于一个节点说双向都可以...8:图模型与神经网络的关系
图模型和神经网络有着类似的网络结构,但两者也有很大的不同。图模型 的节点是随机变量,其图结构的主要功能是用来描述变量之间的依赖关系,一 般是稀疏连接。...图模型中的每个变量一般有着明确的解释,变量之间依赖关系一般是人工来定义。而神经网络中的神经元则没有直观的解释。
图模型一般是生成模型,可以用生成样本,也可以通过贝叶斯公式用来做 分类。