首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

一种计算大型负值矩阵sqrt的内存高效方法

是使用并行计算和分布式计算的技术。通过将矩阵分割成多个小块,然后在多个计算节点上并行计算每个小块的sqrt值,最后将结果合并得到整个矩阵的sqrt值。

这种方法的优势在于能够充分利用多个计算节点的计算能力,提高计算效率。同时,由于将矩阵分割成小块进行计算,可以减少内存占用,降低计算过程中的内存开销。

应用场景方面,这种方法适用于需要计算大型负值矩阵sqrt的场景,比如在科学计算、数据分析、图像处理等领域中。例如,在图像处理中,可以将图像表示为矩阵形式,然后使用该方法计算图像的sqrt值,以实现图像的增强或特征提取等操作。

腾讯云相关产品中,可以使用腾讯云的弹性计算服务(Elastic Compute Service,ECS)来部署并行计算节点,使用腾讯云的分布式计算服务(Tencent Distributed Compute Service,TDCS)来管理和调度计算任务。此外,腾讯云还提供了丰富的存储服务(如对象存储、文件存储)和网络通信服务(如私有网络、负载均衡),以支持大规模计算任务的数据存储和通信需求。

腾讯云弹性计算服务(ECS)产品介绍:https://cloud.tencent.com/product/cvm 腾讯云分布式计算服务(TDCS)产品介绍:https://cloud.tencent.com/product/tdcs 腾讯云对象存储(COS)产品介绍:https://cloud.tencent.com/product/cos 腾讯云文件存储(CFS)产品介绍:https://cloud.tencent.com/product/cfs 腾讯云私有网络(VPC)产品介绍:https://cloud.tencent.com/product/vpc 腾讯云负载均衡(CLB)产品介绍:https://cloud.tencent.com/product/clb

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 每日论文速递 | GaLore: 使用梯度低秩映射进行大模型 Memory-Efficient 全参训练

    摘要:训练大型语言模型(LLMs)面临着显著的内存挑战,主要是由于权重和优化器状态的不断增大。常见的内存降低方法,如低秩适应(LoRA),在每一层中向冻结的预训练权重添加一个可训练的低秩矩阵,从而减少可训练参数和优化器状态。然而,这些方法通常在预训练和微调阶段的性能上都不如使用全秩权重训练,因为它们将参数搜索限制在低秩子空间中,改变了训练动态,并且可能需要全秩热启动。在这项工作中,我们提出了Gradient Low-Rank Projection(GaLore),一种允许全参数学习但比LoRA等常见低秩适应方法更节省内存的训练策略。我们的方法在优化器状态的内存使用上最多减少了65.5%,同时在使用C4数据集进行LLaMA 1B和7B架构的预训练以及在GLUE任务上对RoBERTa进行微调时,保持了效率和性能。我们的8位GaLore相较于BF16基准,将优化器内存进一步降低了82.5%,总训练内存降低了63.3%。值得注意的是,我们首次证明了在具有24GB内存的消费级GPU上(例如NVIDIA RTX 4090)进行7B模型的预训练是可行的,而无需模型并行、检查点策略或卸载策略。

    01

    每日论文速递 | AutoLoRA:通过meta learning学习LoRA最优秩

    摘要:在各种 NLP 任务中,大规模预训练和针对特定任务的微调取得了巨大成功。由于对大型预训练模型的所有参数进行微调会带来巨大的计算和内存挑战,人们开发出了几种高效的微调方法。其中,低秩适应(Low-rank adaptation,LoRA)在冻结的预训练权重基础上对低秩增量更新矩阵进行微调,已被证明特别有效。然而,LoRA 在所有层中统一分配秩,并依赖穷举搜索来找到最佳秩,这导致了高计算成本和次优的微调性能。为了解决这些局限性,我们引入了 AutoLoRA,这是一种基于元学习的框架,用于自动识别每个 LoRA 层的最佳等级。AutoLoRA 将低秩更新矩阵中的每个秩-1 矩阵与一个选择变量相关联,该选择变量决定是否应丢弃秩-1 矩阵。我们开发了一种基于元学习的方法来学习这些选择变量。通过对这些变量的值进行阈值化处理,确定最佳秩。我们在自然语言理解、生成和序列标注方面的综合实验证明了 AutoLoRA 的有效性。

    01

    每日论文速递 | Google提出PERL:将PEFT与RLHF结合起来

    摘要:从人类反馈中强化学习(RLHF)已被证明是将预训练的大型语言模型(LLM)与人类偏好相匹配的有效方法。但是,使用 RLHF 训练模型的计算成本很高,而且整个过程也很复杂。在这项工作中,我们研究的 RLHF 是使用 Hu 等人[2021]提出的参数高效的低库自适应(Low-Rank Adaptation,LoRA)方法来训练底层模型的。我们研究了 "参数高效强化学习"(PERL)的设置,其中我们使用 LoRA 进行奖励模型训练和强化学习。我们比较了 PERL 和传统微调(完全微调)在 7 个基准(包括 2 个奖励建模和强化学习的新数据集)中的不同配置。我们发现,PERL 的性能与传统的 RLHF 设置相当,同时训练速度更快,占用内存更少。这使得 RLHF 的高性能得以实现,同时减少了限制其作为大型语言模型对齐技术的采用的计算负担。我们还发布了两个新颖的向上/向下偏好数据集:"Taskmaster Coffee "和 "Taskmaster Ticketing",以促进围绕 RLHF 的研究。

    01

    Lora升级!ReLoRa!最新论文 High-Rank Training Through Low-Rank Updates

    尽管通过扩展导致具有数千亿参数的大型网络在统治和效率方面表现突出,但训练过参数化模型的必要性仍然难以理解,且替代方法不一定能使训练高性能模型的成本降低。在本文中,我们探索了低秩训练技术作为训练大型神经网络的替代方法。我们引入了一种名为 ReLoRA 的新方法,该方法利用低秩更新来训练高秩网络。我们将 ReLoRA 应用于预训练最多达 350M 参数的变换器语言模型,并展示了与常规神经网络训练相当的性能。此外,我们观察到 ReLoRA 的效率随着模型大小的增加而提高,使其成为训练多十亿参数网络的有效方法。我们的研究发现揭示了低秩训练技术的潜力及其对扩展规律的影响。代码已在 GitHub 上提供。

    00

    每日论文速递 | GEAR:高效 KV Cache 压缩框架

    摘要:键值(KV)缓存已成为加快大语言模型(LLM)推理生成速度的事实。然而,随着序列长度的增加,缓存需求也在不断增长,这使得 LLM 推理变成了一个内存约束问题,极大地限制了系统的吞吐量。现有的方法依赖于放弃不重要的标记或均匀量化所有条目。然而,这些方法在表示压缩矩阵时往往会产生较高的近似误差。自回归解码过程进一步加剧了每一步的误差,导致模型生成出现严重偏差,性能下降。为了应对这一挑战,我们提出了一种高效的 KV 缓存压缩框架--GEAR,它能实现近乎无损的高比率压缩。GEAR 首先对大部分大小相似的条目进行超低精度量化。然后,它采用低秩矩阵来近似量化误差,并采用稀疏矩阵来弥补离群条目的个别误差。通过巧妙地整合三种技术,GEAR 能够充分发挥它们的协同潜力。我们的实验证明,与其他技术相比,GEAR 实现了近乎无损的 4 位 KV 高速缓存压缩,吞吐量提高了 2.38 倍,同时内存峰值大小减少了 2.29 倍。

    01

    当前深度神经网络模型压缩和加速方法速览

    导读: 本文全面概述了深度神经网络的压缩方法,主要可分为参数修剪与共享、低秩分解、迁移/压缩卷积滤波器和知识精炼,本论文对每一类方法的性能、相关应用、优势和缺陷等进行独到的分析。机器之心简要介绍了该论文,更详细的内容请查看原论文。 大型神经网络具有大量的层级与结点,因此考虑如何减少它们所需要的内存与计算量就显得极为重要,特别是对于在线学习和增量学习等实时应用。此外,近来智能可穿戴设备的流行也为研究员提供了在资源(内存、CPU、能耗和带宽等)有限的便携式设备上部署深度学习应用提供了机会。高效的深度学习方法可以

    06
    领券