一个有向图相对于它的DFS树不可能有Ω(n^2)条交叉边。在有向图的DFS遍历过程中,每条边最多被访问两次:一次作为树边,一次作为后向边。假设有n个节点,那么DFS树最多有n-1条边,每条边至多有一个后向边。因此,DFS树的边数加上所有后向边的数目不会超过2(n-1)。所以,有向图相对于它的DFS树不可能有Ω(n^2)条交叉边。
注意:以上回答为普适性原则,不涉及特定云计算品牌商的产品信息。
搜索一个图是有序地沿着图的边訪问全部定点, 图的搜索算法能够使我们发现非常多图的结构信息, 图的搜索技术是图算法邻域的核心。
思想:对于最新发现的顶点v,如果它还有以此为起点而还未探索的边,沿此边探索。如果v的所有边已经探索完了,再回溯到发现v有起始点的那些边。一直到已经探索了从源起点可到的所有顶点为止。如果还有没探索的顶点,将它定义为一个新的源顶点,继续上述过程。
无论是有向图还是无向图,主要的存储方式都有两种:邻接矩阵和邻接表。前者图的数据顺序存储结构,后者属于图的链接存储结构。
图是不同于前面两种数据结构的另一种新的数据结构,线性表中元素与元素之间是被串起来的,每个数据元素只有一个直接前驱和一个直接后继,是一种一对一的数据结构;在树的结构中,数据元素之间有明显的层次关系,并且每一层上的数据元素可能和下一层中多个元素相关,但只能和上一层中的一个元素相关,是一种一对多的数据结构举个例子就是你可以有多个孩子,但是只能有一对父母。但现实中的情况是,人与人之间的关系是复杂的,不是简单的线性关系,也不全是层级关系,而可能交叉相互关系,也就是多对多的数据情况,这就图的一个概念,图是一种多对多的数据结构。
在上一篇博客判断有向图是否有圈中从递归的角度简单感性的介绍了如何修改深度优先搜索来判断一个有向图是否有圈。事实上, 它的实质是利用了深度优先生成树(depth-first spanning tree)的性质。那么什么是深度优先生成树?顾名思义,这颗树由深度优先搜索而生成的,由于无向图与有向图的深度优先生成树有差别,下面将分别介绍。 一. 无向图的深度优先生成树 无向图的深度优先生成树的生成步骤: 深度优先搜索第一个被访问的顶点为该树的根结点。 对于顶点v,其相邻的边w如果未被访问,则边(v, w)为该树的树
1. 拓扑排序 拓扑排序是对有向无圈图的顶点的一种排序:如果存在一条vi到vj的路径,则vj排在vi后面(因为只要满足这个特性就是拓扑序列,所以它不一定是唯一的)。比如在众多的大学课程中,有些课有先修课,我们可以将其抽象为拓扑排序,有向边(v, w)表明课程v必须安排在w之前,否则课程w就无法进行。我们可以想象所有的课程以及课与课之间的关系可以用一个图来表示,而拓扑排序就可以知道课程安排的顺序。然而,如果图存在圈,就没有拓扑序列。比如如果要上课程A必须上课程B,要上课程B必须上课程C,而要上课程C必须上课程
连通,字面而言,类似于自来水管道中的水流,如果水能从某一个地点畅通流到另一个地点,说明两点之间是连通的。也说明水管具有连通性,图中即如此。
设图 A = (V, E) 有 n 个顶点,则图的邻接矩阵是一个二维数组 A.Edgen,定义为:
图是一种非线性数据结构,它由节点(也称为顶点)和连接这些节点的边组成。图可以用来表示各种关系和连接,比如网络拓扑、社交网络、地图等等。图的节点可以包含任意类型的数据,而边则表示节点之间的关系。图有两种常见的表示方法:邻接矩阵和邻接表。
数据结构是程序的核心之一,可惜本公众内关于数据结构的文章略显不足,于是何小编打算与向柯玮小编一起把数据结构这部分补齐,来满足各位观众大老爷。
连通图:在无向图G中,若对任何两个顶点 v、u 都存在从v 到 u 的路径,则称G是连通图。
顶点和边:图中结点称为顶点,第 i 个顶点记作 vi。两个顶点 vi 和 vj 相关联称作顶点 vi 和顶点 vj 之间有一条边,图中的第 k 条边记作 ek,ek = (vi,vj) 或 <vi,vj>。
图Graph是由顶点(图中的节点被称为图的顶点)的非空有限集合V与边的集合E(顶点之间的关系)构成的。 若图G中的每一条边都没有方向,则称G为无向图。 若图G中的每一条边都有方向,则称G为有向图。
Traversal就是遍历,主要是对图的遍历,也就是遍历图中的每个节点。对一个节点的遍历有两个阶段,首先是发现(discover),然后是访问(visit)。遍历的重要性自然不必说,图中有几个算法和遍历没有关系?!
图的基础概念图的基础算法1. 图的遍历深度优先搜索遍历(DFS)广度优先搜索遍历(BFS)2. 单源最短路径问题(Dijkstra算法)3. 拓扑排序4. 最小生成树Kruskal算法(加边法)Prim算法(加点法)经典面试题1.克隆图2.课程表II3.网络延迟问题4.除法求值5.最小高度树6.重新安排行程7. 冗余连接
Petr is a detective in Braginsk. Somebody stole a huge amount of money from a bank and Petr is to catch him. Somebody told Petr that some luxurious car moves along the roads without stopping.
给定一个 n×m 的二维整数数组,用来表示一个迷宫,数组中只包含 0 或 1,其中 0 表示可以走的路,1 表示不可通过的墙壁。
数据结构是计算机科学中的一个重要概念,它描述了数据之间的组织方式和关系,以及对这些数据的访问和操作。常见的数据结构有:数组、链表、栈、队列、哈希表、树、堆和图。
按照上述深度优先遍历的过程,以每个节点第一次被访问(v[x] 被赋值为 1 时)的顺序
tarjan算法 一个关于有向图的联通性的神奇算法。 基于DFS(迪法师)算法,深度优先搜索一张有向图。 名词的储备,有备无患 强连通(strongly connected): 在一个有向图G里,设两个点 a、b。发现,由a有一条路可以走到b,由b又有一条路可以走到a,我们就叫这两个顶点(a,b)强连通。 强连通图(Strongly Connected Graph): 如果在一个有向图G中,每两个点都强连通,我们就叫这个图,强连通图。 强连通分量(strongly connected c
一、背景介绍 强连通分量是有向图中的一个子图,在该子图中,所有的节点都可以沿着某条路径访问其他节点。强连通性是一种非常重要的等价抽象,因为它满足 自反性:顶点V和它本身是强连通的 对称性:如果顶点V和顶点W是强连通的,那么顶点W和顶点V也是强连通的 传递性:如果V和W是强连通的,W和X是强连通的,那么V和X也是强连通的 强连通性可以用来描述一系列属性,如自然界中物种之间的捕食关系,互相捕食的物种可以看作等价的,在自然界能量传递中处于同一位置。 下图中,子图{1,2,3,4}为一个强连通分量,因为顶点1,2,
图的相关概念请查阅离散数学图这一章或者数据结构中对图的介绍。代码来自课本。 /*Graph存储结构*/ //邻接矩阵表示法 #define MAX_VERTEX_NUM 20 /*最多顶点个数*/ #define INFINITY 32768 /*表示极大值,即∞*/ /*图的种类:DG表示有向图,DN表示有向网,DUG表示无向图,UDN表示无向网*/ typedef enum {DG, DN, UDG, UDN} GraphKind; /*枚举类型*/ typedef char Ve
图是比线性表和树更为复杂且抽象的结,和以往所学结构不同的是图是一种表示型的结构,也就是说他更关注的是元素与元素之间的关系。下面进入正题。
一个有向图(或有向图)是一组顶点和一组有向边,每条边连接一个有序对的顶点。我们说一条有向边从该对中的第一个顶点指向该对中的第二个顶点。对于 V 个顶点的图,我们使用名称 0 到 V-1 来表示顶点。
图的遍历算法可以用来判断图的连通性。如果一个无向图是联通的,如果无向图是联通的,则从任一节点出发,仅需一次遍历就可以访问图中的所有节点。如果无向图是非联通的,则从某一节点出发,一次遍历仅能访问到该顶点所在联通分量的所有顶点,而对于图中其他联通分量的顶点,则无法通过这次遍历访问。对于有向图来说,若从初始点到图中的每个顶点都有路径,则能够访问到图中的所有顶点,否则不能访问到所有顶点。
含有n个顶点的无向完全图有多少条边? n×(n-1)/2条边 含有n个顶点的有向完全图有多少条弧? n×(n-1)条边
图结构是数据元素呈多对多关系,就是任意两个元素存在这样的关系。如果用一个公式来表示就是由顶点集合和顶点之间的关系集合组成的一种数据结构。
在有向图G中,如果两个 顶点间至少存在一条路径,称两个顶点强连通(strongly connected)。如果有向图G的每两个顶点都强连通,称G是一个强连通图。非强连通图有向图的极大强连通子图,称为强连通分量(strongly connected components)。
有向图强连通分量:在有向图 G 中,如果两个顶点 V_i, V_j 间(vi>vj)有一条从 V_i 到 V_j 的有向路径,同时还有一条从 V_j 到 V_i 的有向路径,则称两个顶点强连通 (strongly connected)。如果有向图 G 的每两个顶点都强连通,称 G 是一个强连通图。有向图的极大强连通子图,称为强连通分量 (strongly connected components)。
在 《Tarjan 算法的思路》中我们已经给出了 Tarjan 算法中的比较重要的几个元素,我们在这里重新复习一下:
tarjan算法讲解。 tarjan算法,一个关于 图的联通性的神奇算法。基于DFS算法,深度优先搜索一张有向图。!注意!是有向图。根据树,堆栈,打标记等种种神奇方法来完成剖析一个图的工作。而图的联通性,就是任督二脉通不通。。的问题。 了解tarjan算法之前你需要知道: 强连通,强连通图,强连通分量,解答树(解答树只是一种形式。了解即可) 强连通(strongly connected): 在一个有向图G里,设两个点 a b 发现,由a有一条路可以走到b,由b又有一条路可以走到a,我们就叫这两个顶点(a,
又要画图了。一到这里就莫名其妙的烦,之前写过的图相关博客已经让我都删了,讲的语无伦次。 希望这篇能写好点。
图是一种比线性表和树更为复杂的数据结构。在线性表中,数据元素之间仅有线性关系,每个数据元素只有一个直接前驱和一个直接后继;在树形结构中,数据元素之间有着明显的层次关系,并且每一层中的数据元素可能和下一层中的多个元素(即其孩子结点)相关,但只能和上一层中一个元素(即其双亲结点)相关; 而在图结构中,结点之间的关系可以是任意的,图中任意两个数据元素之间都可能相关。
线性结构是指逻辑上各个结点一一对应的关系,例如链表,即使它在储存上可能并不是顺序储存
概述 在图算法中经常要执行遍历每个顶点和每条边的操作,即图搜索。许多图算法都以图搜索为基础,如2-着色问题、连通性计算基于深度优先搜寻(depth-first search, DFS),而无权最短路径则基于广度优先搜索(breadth-first search, BFS)。基于搜索的算法还包括计算最小生成树的Prim算法以及计算最短路径的Dijkstra算法。图实现算法在现实的算法结构中占据重要的部分。 图 图的定义 图G是由顶点的有穷集合,以及顶点之间的关系组成,顶点的集合记为V,顶点之间的关系构成边的集
首先,图可以分为有向图和无向图(这里只讨论无权图),像下面这个图就是无向图,V1 ~ V5 是图的顶点,而连接图的两个顶点的线就叫边或者专业一点的说法叫做:“度”,在无向图中,两个顶点之间的连线的方向可以是互换的,比如说,V1 顶点和 V2 顶点之间的边我们可以看做是以 V1 为起点, V2 为终点的一条边,也可以看做是以 V2 位起点, V1 位终点的一条边。由此,一个无向图的度的总数等于这个图中的边的总数的两倍,下面的那个图中一共有 7 条边,因为它是无向图,那么它的度的总数就是 14。
图是非线性数据结构,是一种较线性结构和树结构更为复杂的数据结构,在图结构中数据元素之间的关系可以是任意的,图中任意两个数据元素之间都可能相关。
树(Tree)是一种非线性的数据结构,由若干个节点(Node)组成。树的定义包括以下几个术语:
基本概念 图(Graph):图(Graph)是一种比线性表和树更为复杂的数据结构。 图结构:是研究数据元素之间的多对多的关系。在这种结构中,任意两个元素之间可能存在关系。即结点之间的关系可以是任意的,图中任意元素之间都可能相关。 图G由两个集合V(顶点Vertex)和E(边Edge)组成,定义为G=(V,E) 线性结构:是研究数据元素之间的一对一关系。在这种结构中,除第一个和最后一个元素外,任何一个元素都有唯一的一个直接前驱和直接后继。 树结构:是研究数据元素之间的一对多的关系。在这种结构中
这一篇我们要总结的是图(Graph),图可能比我们之前学习的线性结构和树形结构都要复杂,不过没关系,我们一点一点地来总结。那么关于图,我将从以下几点进行总结: 1、图的定义 2、图相关的概念和术语 3、图的创建和遍历 1、图的定义 什么是图呢? 图是一种复杂的非线性结构。 在线性结构中,数据元素之间满足唯一的线性关系,每个数据元素(除第一个和最后一个外)只有一个直接前驱和一个直接后继; 在树形结构中,数据元素之间有着明显的层次关系,并且每个数据元素只与上一层中的一个元素(父节点)及下一层的多个元素(孩子节点
这是图论的基础知识点,也是学习Tarjan的导学课。 一、知识 对于在图G上进行深度优先搜索算法所产生的深度优先森林Gt,我们可以定义四种边的类型:
图的每一个点称为顶点(Vertex),通常我们会给顶点标上序号,而这些序号就可以理解为索引
一个图G = (V, E)由一些点及点之间的连线(称为边)构成,V、E分别计G的点集合和边集合。在图的概念中,点的空间位置,边的区直长短都无关紧要,重要的是其中有几个点以及那些点之间有变相连。
无向边: 若顶点 vi 到 vj 之间的边没有方向,则称这条边为无向边(Edge),用无序偶对 (vi, vj) 表示,如果图中的边都是无向边,则称该图为无向图(Undirected graphs)。
某国有n个城市,为了使得城市间的交通更便利,该国国王打算在城市之间修一些高速公路,由于经费限制,国王打算第一阶段先在部分城市之间修一些单向的高速公路。 现在,大臣们帮国王拟了一个修高速公路的计划。看了计划后,国王发现,有些城市之间可以通过高速公路直接(不经过其他城市)或间接(经过一个或多个其他城市)到达,而有的却不能。如果城市A可以通过高速公路到达城市B,而且城市B也可以通过高速公路到达城市A,则这两个城市被称为便利城市对。 国王想知道,在大臣们给他的计划中,有多少个便利城市对。
随着学习的深入,我们的知识也在不断的扩展丰富。树结构有没有让大家蒙圈呢?相信我,学完图以后你就会觉得二叉树简直是简单得没法说了。其实我们说所的树,也是图的一种特殊形式。
DAG是公认的下一代区块链的标志。本文从算法基础去研究分析DAG算法,以及它是如何运用到区块链中,解决了当前区块链的哪些问题。 关键字:DAG,有向无环图,算法,背包,深度优先搜索,栈,BlockChain,区块链 图 图是数据结构中最为复杂的一种,我在上大学的时候,图的这一章会被老师划到考试范围之外,作为我们的课后兴趣部分。但实际上,图在信息化社会中的应用非常广泛。图主要包括: 无向图,结点的简单连接 有向图,连接有方向性 加权图,连接带有权值 加权有向图,连接既有方向性,又带有权值 图是由
在有向图G中,如果两点互相可达,则称这两个点强连通,如果G中任意两点互相可达,则称G是强连通图。
图的遍历是指从图中的任一顶点出发,对图中的所有顶点访问一次且只访问一次。图的遍历操作和树的遍历操作功能相似。图的遍历是图的一种基本操作,图的其它算法如求解图的连通性问题,拓扑排序,求关键路径等都是建立在遍历算法的基础之上。
今天是算法数据结构专题的第35篇文章,我们来聊聊图论当中的强连通分量分解的Tarjan算法。
领取专属 10元无门槛券
手把手带您无忧上云