请思考: 1 透视表是什么?会用Excel做透视表吗? 2 pandas如何做透视表分析?使用什么函数?函数的参数如何选择和设置? 1 透视表介绍 数据透视表是一个用来总结和展示数据的强大工具。...3 数据透视表分析 简单的透视表,指定DataFrame里面需要透视的一个index,以Name为index做透视表。...参数aggfunc可以接受一个聚合计算的列表,例如:求和与计数 代码 pd.pivot_table(df, index=['Manager', 'Rep'], values=['Price'], aggfunc...参数columns实现对透视表做进一步细分或者下钻。...常用的参数包括index, values, aggfunc, columns, fill_value, margins等。
数据透视表是数据分析工作中经常会用到的一种工具。Excel本身具有强大的透视表功能,Python中pandas也有透视表的实现。...本文使用两个工具对同一数据源进行相同的处理,旨在通过对比的方式,帮助读者加深对数据透视表的理解。 数据源简介: 本文数据源来自网络,很多介绍pandas的文章都使用了该数据。...目标5:实现对Price的求和 1.Pandas实现 pd.pivot_table(df, index=['Manager', 'Rep'], values=['Price'], aggfunc=np.sum...目标10:实现透视表筛选功能,只查看Debra Henley的数据 1.pandas实现 table = pd.pivot_table(df, index=['Manager', 'Rep'], columns...小结与备忘: index-对应透视表的“行”,columns对应透视表的列,values对应透视表的‘值’,aggfunc对应值的汇总方式。用图形表示如下: ?
Python: 关于Python中的变量与数据描述函数,因为之前已经介绍过一些基础的聚合函数,这里仅就我使用最多的数据透视表和交叉表进行讲解:Pandas中的数据透视表【pivot_table】和交叉表...透视表中的行字段,通常为类别型字段) columns=None, #列字段(对应Excel透视表中的列字段,通常为类别型字段) values=None...pandas的交叉表函数pd.crosstab参数设定规则与透视表保持了很高的相似度,确实从呈现形式上来讲,数值型变量的尽管聚合方式有很多【均值、求和、最大值、最小值、众数、中位数、方差、标准差、求和等...以上透视表是针对数值型变量的分组聚合,那么针对类别型变量则需要使用pandas中的交叉表函数进行列表分析。...事实上,crosstab似乎同时也能兼容透视表的完整功能,但是奇怪的是透视表提供了数据框名称参数,指定参数时无需声明数据框名称,而且行列字段都可指定列表对象(二维以上,指定多个 字段),但是交叉表则没有给出数据框名称向量
这次的数据源长这样 我们插入一个透视表 然后放入我们要的字段 这是我们最常见的透视表布局格式 好多人都以为只有这种数据存放方式 不是的 透视表有3种布局方式 默认的是压缩形式 大纲形式是这样的...多了一列 表格形式是这样的 上面少了一行,下面多了一行 放个GIF 我选择[重复所有项目标签]后 你甚至看不出来这到底是表还是透视表了 如果你说还有倒三角可以看出来 那这样呢 隐藏了第...3行,在第2行加一个假标题 很多人喜欢用合并单元格 因为看起来清晰明了 其实数据透视表也是可以合并单元格的 在这里 勾上,确定 就变这样了 放个GIF 以上
一、pivot_table函数定义 pivot_table函数是pandas库中的函数,调用首先需要加载pandas库。 其功能相当于excel中的数据透视表。...values:要聚合的列,默认对所有数值型变量聚合。 index:设置透视表中的行索引名。 columns:设置透视表中的列索引名。...注意这里的缺失值是指透视后结果中可能存在的缺失值,而非透视前原表中的缺失值。 margins:指定是否加入汇总列,默认为False。..., values=['综合成绩']) 得到结果: 类似excel中的如下设置: 例4:指定聚合的统计函数 如果aggfunc函数不指定聚合的函数,默认计算均值,接下来试下求和函数看看效果...'], values=['综合成绩'], fill_value='空值') 得到结果: 对比例3,可以理解fill_value填充缺失值,是指填充透视后结果中存在的缺失值,而非透视前原表中的缺失值。
Pandas 透视表概述 数据透视表(Pivot Table)是一种交互式的表,可以进行某些计算,如求和与计数等。所进行的计算与数据跟数据透视表中的排列有关。...之所以称为数据透视表,是因为可以动态地改变它们的版面布置,以便按照不同方式分析数据,也可以重新安排行号、列标和页字段。每一次改变版面布置时,数据透视表会立即按照新的布置重新计算数据。...另外,如果原始数据发生更改,则可以更新数据透视表。...values,index,columns,aggfunc,下面通过案例介绍pivot_tabe的使用 零售会员数据分析案例 业务背景介绍 某女鞋连锁零售企业,当前业务以线下门店为主,线上销售为辅,...= ['月增量'] month_count.head() 用数据透视表实现相同功能:dataframe.pivot_table() index:行索引,传入原始数据的列名 columns:列索引,传入原始数据的列名
在Python中,有多个库可以用来创建和操作数据透视表,其中最常用的是pandas库。 下面我将介绍如何使用Python中的pandas库来实现数据透视表和透视分析。...该函数的主要参数包括:index(用于分组的列)、columns(用于创建列的列)、values(用于聚合计算的列)和aggfunc(聚合函数,默认为求平均值)。...pivot_table = pd.pivot_table(df, index='category', columns='year', values='sales', aggfunc=np.sum) print...下面是一些常用的操作: 筛选数据:可以基于数据透视表中的特定值或条件筛选出我们感兴趣的数据。...filtered_data = pivot_table[pivot_table['category'] == 'A'] 计算汇总统计量:可以对数据透视表中的行、列或整个表格进行统计计算,比如求和、平均值等
宽格式数据:每一行数据为是一条完整的记录,记录着ID(Player)的各种属性;例如上图右表中,第一行就是一条完整的记录,分别记录Player1选手的name叫Sulie,sex为male,education...特别说明:不要将长宽格数据转换为宽格式数据理解为数据透视表,长转宽只是数据存储形式发生变化,并不对操作对象进行计算,而数据透视表一般对操作对象进行某种操作计算(计数、求和、平均等)。...参数columns是长格式数据中的key键对应的列名;参数values是长格式数据中的value对应的列。...这里不能使用透视表pivot_table()函数,因为pivot_table()函数对value进行计算(求和、平均等),但这里Message列都是字符型的,无法进行计算;若value为数值型数据,可以使用...columns = 'Year', values = 'Sale') ?
学习Excel,数据er最常用的两大Excel功能就是VLOOKUP和数据透视表!...▲图3-16 对比上图的Excel数据透视表参数,我列出了pivot_table()方法中的8个常用参数。..., columns = "品牌", aggfunc = np.sum) 输出结果: 如上图所示,“透视表”中NaN空值可以使用fill_value...openpyxl提供对透视表的读取支持,以便将它们保留在现有文件中,但是不支持用户创建pivot表。它可以编辑和操作现有的透视表,以后有机会跟大家介绍一波。...如果大家想系统学习Pandas,推荐一本《深入浅出Pandas》 这是一本全面覆盖了Pandas使用者的普遍需求和痛点的著作,基于实用、易学的原则,从功能、使用、原理等多个维度对Pandas做了全方位的详细讲解
介绍 也许大多数人都有在Excel中使用数据透视表的经历,其实Pandas也提供了一个类似的功能,名为pivot_table。...顺便说一下,你知道微软为PivotTable(透视表)注册了商标吗?其实以前我也不知道。不用说,下面我将讨论的透视表并不是PivotTable。...pd.pivot_table(df,index=["Manager","Rep"],values=["Price"]) “Price”列会自动计算数据的平均值,但是我们也可以对该列元素进行计数或求和。...列vs.值 我认为pivot_table中一个令人困惑的地方是“columns(列)”和“values(值)”的使用。...我一般的经验法则是,一旦你使用多个“grouby”,那么你需要评估此时使用透视表是否是一种好的选择。 高级透视表过滤 一旦你生成了需要的数据,那么数据将存在于数据帧中。
2018年6月20日笔记 数据透视表制作 文件下载链接: https://pan.baidu.com/s/1LAp8mGdVm7-C6prIh9Z2hA 密码: 1r67 ?...文件打开图示.png 选择数据区域,点击下图所示数据透视图按钮。 ? 数据透视图按钮位置.png ? 数据透视表设置.png ? 成功生成透视表结果.png ?...生成透视表结果.png
一 普通表插入 这是我们常见的普通表 也就是输入标题文字数字就是的表 依次点击[插入]→[数据透视表] 最后点击确定就会生成透视表啦 ↓↓↓下面是动图 注意,这个过程中可能会出现缺少标题错误...这种情况下一般是在标题行有单元格为空 检查下,填入标题就好 二 超级表插入 这里说的超级表 是你点击的时候上面会多出一个菜单栏的表中表 这个插入透视表更简单 直接在菜单点击[透过数据透视表汇总...]即可 ↓↓↓下面是动图 三 外部数据源插入 这一步需要你先设置好PowerQuery 然后和第一个一样的步骤 [插入]→[数据透视表] 只是在弹窗选择了第2个选项'使用外部数据源' 选择你的连接...,点击确定就好了 ↓↓↓下面是动图 四 模型插入 这一步的前提是需要你提前在Excel里面建模 (如果都会建模了应该早就会插入透视表了吧(╯‵□′)╯︵┻━┻) 然后和第一个一样的步骤 [插入]→...[数据透视表] 只是在弹窗选择了第3个选项'使用此工作簿的数据模型' 点击确定就好 ↓↓↓下面是动图 以上
把行变成列 删除重复项 筛选器筛选特定部分 数据透视表数据需要被引用时
透视表在一种功能很强大的图表,用户可以从中读取到很多的信息。利用excel可以生成简单的透视表。本文中讲解的是如何在pandas中的制作透视表。 的文件 df.head() df["Status"] = df["Status"].astype("category") df["Status...图形备忘录 查询指定的字段值的信息 当通过透视表生成了数据之后,便被保存在了数据帧中 高级功能 Status排序作用的体现 不同的属性字段执行不同的函数 查看总数据,使用margins=True...解决数据的NaN值,使用fill_value参数 4.使用columns参数,指定生成的列属性 使用aggfunc参数,指定多个函数 使用index和values两个参数 只使用index参数...建立透视表 不严格要求,但是设置了顺序有助于分析,一直保持所想要的顺序 使用category数据类型,按照想要查看的方式设置顺序 设置数据
最近有朋友在使用数据透视表双击出明细的时候遇到2个问题: 1、生成的明细表自动带了筛选,怎么取消筛选?...首先,数据透视表双击出明细生成的就是一个标准化的“表格”(现网上也称为“超级表”),对于超级表的操作,如果你熟悉它,会觉得它非常好用, 如果不熟悉,你可能会觉得它没有Excel原来的普通表方便。...如下图所示: 二、关于复制其他数据到该表 一般情况下,如果你是直接复制数据然后粘贴到紧接着该表的右侧(不隔空列)或下方(不隔空行),超级表的范围会自动扩展,筛选按钮也可正常使用。...因此,也借回答这2个数据透视表的问题简单说一下。...如果你粘贴数据不被自动纳入超级表范围,实际上你可以对超级表的范围进行手动扩展以包含你复粘贴的数据,拖动扩展按钮(超级表的右下角)即可,如下图所示: 如果你还不习惯操作超级表,也不想学,那也可以将超级表转换为普通表
Pivot Table 从功能上讲,Pandas 中用透视表 (pivot table) 和 Excel 里面的透视表是一样的。...透视表是一种做多维数据分析的工具,还记得 Pandas 的 split-apply-combine 三部曲吗?首先用 groupby 分组,再平行将某个函数应用到各组上,最后自动连接成一个总表。...先看一张图: Pivot 字面意思是支点,即上图中的 index 和 columns 指定的行和列标签,支点可想理解成数据 (values) 在哪个维度上做整合 (aggfunc),再吧 NaN 值用...df = pd.read_csv('PB Sales.csv') df 设置“单行”为 Pivot 创建透视表的 pivot_table() 函数里面的参数设置很多,学习它最有效的方式是每一步设置一个参数...,如果要用求和的函数需要设置 aggfunc=np.sum,通用语法为 pd.pivot_table(df, index=label_list, values=label_list, aggfunc=func
在上一篇文章中我们了解到Pandas模块中的pivot_table()函数可以用来制作数据透视表,今天小编来介绍一下Pandas模块中的另外一个函数corsstab(),我们可以通过调用该函数来制作交叉表...模块导入和数据读取 那我们按照惯例,首先导入模块并且来读取所要使用到的数据集,引用的依然是之前制作数据透视表的数据集 import pandas as pd def load_data():...df = load_data() df.head() output 牛刀小试 交叉表是用于统计分组频率的特殊透视表。...{:.2%}') output 进一步衍生 最后还有values以及aggfunc两参数,其中aggfunc参数具体指的是指定聚合函数,例如平均数、求和以及中位数等统计方法,对value参数指定的连续性变量的列进行计算...,代码如下 pd.crosstab( index = df['region'], columns = df['product_category'], values = df[
下图为数据分组与数据透视表的对比图: ? 数据透视表不管是在Excel还是Python中都是一个很重要的功能,大家都需要熟练掌握。...Excel实现 Excel中的数据透视表在插入菜单栏中,选择插入透视表以后就会看到下图的界面。...下图左侧为数据表中的所有字段,右侧为数据透视表选项,把左侧字段拖到右侧对应的框中即完成了数据透视表的制作。 ?...fill_value=None, margins=False, dropna=True, margins_name='All') #data表示要做数据透视表的整个表 #values对应Excel中值那个框...;如果需要对不同的值进行不同的计算类型,需要传入一个字典,键为列名,值为计算方式,下面对用户ID进行计数、对7月销量进行求和: pd.pivot_table(df,values = ["用户ID","7
通过设置新的行标签index和列标签columns,指定需要被统计分析的数值values,指定采用的统计聚合函数aggfunc等,利用数据透视表可以对原始数据表进行多种视角的分析和不同方式的重塑,因而称之为透视表...pivot_table则是直接通过设置index,columns,values,aggfunc等参数生成透视表。...一,Excel中的数据透视表 Excel中的数据透视表可以设置行(index),列(columns),值(values),并通过值字段设置选择聚合函数。图形界面操作相对简单,但不够灵活和强大。 ?...二,pivot_table数据透视表 相比较Excel中的数据透视表,使用pandas的pivot_table函数来实现数据透视表,将十分灵活和强大。 构造dataframe数据 ?...2,columns参数 ? 3,values 参数 ? 4,aggfunc 参数 ? ? ? ? 5,pivot_table参数总览 ?
一文看懂 Pandas 中的透视表 透视表在一种功能很强大的图表,用户可以从中读取到很多的信息。利用excel可以生成简单的透视表。本文中讲解的是如何在pandas中的制作透视表。...读取数据 注:本文的原始数据文件,可以在早起Python后台回复 “透视表”获取。...df["Status"].cat.set_categories(["won","pending","presented","declined"],inplace=True) # 设置顺序 建立透视表...使用index和values两个参数 ? 3. 使用aggfunc参数,指定多个函数 ? 4.使用columns参数,指定生成的列属性 ? 5. 解决数据的NaN值,使用fill_value参数 ?...不同的属性字段执行不同的函数 ? ? 8. Status排序作用的体现 ? 高级功能 当通过透视表生成了数据之后,便被保存在了数据帧中 查询指定的字段值的信息 ?
领取专属 10元无门槛券
手把手带您无忧上云