是指根据给定的预测结果,反推出原始输入的函数。在机器学习和数据分析领域中,预测函数的逆常常用于解决逆问题,即从输出推断输入。
预测函数的逆可以应用于多个领域和场景,例如:
对于预测函数的逆,腾讯云提供了一系列相关产品和服务:
总结:预测函数的逆是根据给定的预测结果,反推出原始输入的函数。它在逆向工程、数据恢复、特征提取、异常检测和数据生成等领域有广泛应用。腾讯云提供了相关产品和服务,可支持用户进行逆向分析和建模。
今天给大家介绍的是Google Research和蚂蚁金服等团队在NeurlPS发表的一篇名为“Retrosynthesis Prediction withConditional Graph Logic Network”的文章。逆合成分析属于有机化学中的基本问题,在机器学习领域也引起广泛关注。文章中,作者把逆合成的任务描述为“在确定的分子空间中寻找可以用来合成产物分子的反应物分子集合”这一问题。大多数现有的方法依赖于子图匹配规则的基于模板的模型,但是化学反应是否可以进行并不是严格由决策规则定义的。在文章中,作者提出了一种使用条件图逻辑网络来完成这项任务的新方法,它可以学习何时应该应用反应模板中的规则,隐式地考虑所产生的反应是否具有化学可行性和策略性。作者还提出了一种有效的分层抽样来减少计算成本。在基准数据集上,与当时最先进的方法相比,作者的模型实现了8.1%的显著改进,同时还提供了对预测的解释。
【导读】一年一度的国际顶级学术会议NeurIPS 2019将于12月8日至14日在加拿大温哥华举行。作为人工智能和机器学习领域最顶级的盛会之一,每年都会吸引来自全世界的AI大牛、学者、技术爱好者参会。今天为大家推荐的这篇论文是蚂蚁金服的技术专家对入选论文《Retrosynthesis Prediction with Conditional Graph Logic Network》做出的深度解读。
今天给大家介绍的是韩国科学技术院(KAIST)与穆罕默德·本·扎耶德人工智能大学(MBZUAI)研究人员联合发表在ICML2021上的一篇文章。作者提出一种端到端的框架,用于直接训练深度神经网络,使预测的反应路线更符合现实中的反应要求。实验表明,该方案显著提高了解决逆合成问题的成功率,同时保持了网络预测有效反应的性能。
今天给大家介绍的是日本统计数学研究所Zhongliang Guo等人在Journal of Chemical Information and Modeling上发表的一篇名为“Bayesian Algorithm for Retrosynthesis”的文章。目前,新兴的机器学习技术正在重新制定逆合成规划的过程。这项研究的目的是发现从特定的分子到商用化合物的合成路线,被简化为一个组合优化任务,其解空间受所有可能的可购反应物对的组合复杂性约束。作者在贝叶斯推理和计算的框架内处理这个问题。该工作包括一个深度神经网络的训练,能够对给定反应物的组合进行高精度的前向预测,然后利用贝叶斯条件概率定理将正向模型反演为逆向模型。贝叶斯逆合成算法的正向模型预测精度约为87%。作者还研究了基于专家知识的不同候选物的潜在适用性。
今天给大家介绍纽约大学Lu等人在2022年发表的一篇名为“Unified Deep Learning Model for Multitask Reaction Predictions with Explanation”的文章[1]。有机化学是现代多个学科领域的基石,深刻改变着我们生活的方方面面,因此近代以来科研工作者一直致力于探索开发鲁棒性更好的机器学习模型来辅助有机化学合成。
按照目前的国家人口及增长率,我们来展望下2020-2040年的世界人口数。(因为负增长及一些国家的增长率数据为0,所以数据可能不怎么正确。)我们主要是展示分析过程及技巧为主。
回归是统计学中最有力的工具之一。机器学习监督学习算法分为分类算法和回归算法两种,其实就是根据类别标签分布类型为离散型、连续性而定义的。顾名思义,分类算法用于离散型分布预测,如前面讲过的KNN、决策树、朴素贝叶斯、adaboost、SVM、Logistic回归都是分类算法;回归算法用于连续型分布预测,针对的是数值型的样本,使用回归,可以在给定输入的时候预测出一个数值,这是对分类方法的提升,因为这样可以预测连续型数据而不仅仅是离散的类别标签。
推荐系统中通常采用隐式反馈(如点击)来构建模型,而观察到的反馈代表用户的点击日志,所以观察到的点击与真实用户意图之间时存在差异的,并且观察到的反馈通常偏向于热门商品,从而高估了热门商品的实际相关性。尽管现有研究已经开发出使用逆倾向加权 (IPW) 或因果推理的无偏学习方法,但它们只专注于消除商品的流行度偏差。本文提出了一种新颖的无偏推荐学习模型BISER,以消除推荐模型引起的商品曝光偏差。BISER 由两个关键组成部分组成:
2024年2月29日,深圳大学欧阳乐老师、腾讯人工智能实验室赵沛霖研究员团队在Bioinformatics上发表文章MARS: a motif-based autoregressive model for retrosynthesis prediction。
Earth Engine 支持转置、逆和伪逆等数组变换。例如,考虑一个时间序列图像的普通最小二乘 (OLS) 回归。在以下示例中,具有预测变量和响应的带的图像被转换为数组图像,然后“求解”以获得最小二乘系数估计三种方式。首先,组装图像数据并转换为数组:
回归的目的是预测数值型的目标值,最直接的办法是依据输入写出一个目标值的计算公式,比如要计算一个男生可以找到女朋友的概率:
在前面的《reverse原理的魔幻艺术》)(可查看历史消息或点击数学魔术菜单,传送门:Reverse原理背后的数学和魔幻艺术)一文中,我们提到了扑克牌的基础手法dealing,等价于取序列的头部进行reverse这一对称函数关系操作,进而有其二次操作以后恢复的良好性质以得到把预先在给定位置的setting变成预言或者优美画面的魔术效果。关于这个原理,这里还有两点拓展思考:
LSTM模型的一个常见用途是对长时间序列数据进行学习预测,例如得到了某商品前一年的日销量数据,我们可以用LSTM模型来预测未来一段时间内该商品的销量。但对于不熟悉神经网络或者对没有了解过RNN模型的人来说,想要看懂LSTM模型的原理是非常困难的,但有些时候我们不得不快速上手搭建一个LSTM模型来完成预测任务。下面我将对一个真实的时间序列数据集进行LSTM模型的搭建,不加入很多复杂的功能,快速的完成数据预测功能。
今天分享一篇发表在CVPR 2020上的论文:BBN: Bilateral-Branch Network with Cumulative Learning for Long-Tailed Visual Recognition (原文链接:[1])。
2024年2月8日,来自清华大学自动化系的汪小我团队在Synthetic and Systems Biotechnology上发表文章DIProT: A deep learning based interactive toolkit for efficient and effective Protein design。
今天给大家介绍的是Journal of Chemical Information and Modeling上的文章 "Prediction and Interpretable Visualization of Retrosynthetic Reactions Using Graph Convolutional Networks"。
今天给大家介绍的是来自佐治亚理工学院的Le Song课题组发表在ICML2020上的关于逆合成规划的一篇文章。在本文中,作者提出了一种基于神经的类A*算法,称为Retro*,它能有效地找到高质量的合成路线。在基准USPTO数据集上进行的实验表明,作者提出的方法在成功率和解决方案质量方面均优于现有的最新技术,同时效率更高。
Deep kinematic inference affords efficient and scalable control of bodily movements
(此文想给袁贤讯老师“再谈贝叶斯——从个体和群体的概率更新角度”一文中提到的beta分布及贝叶斯分析等,补充一点简单解释。)
2021年4月13日,Neves BJ等人在Journal of Cheminformatics杂志发表文章,文章使用分子指纹将分子表示为一段基于子结构的"句子",通过学习子结构水平上的化学变化来预测逆合成反应。
扩散模型是跨不同深度学习领域使用的生成模型。目前,它们主要用于图像和音频生成。最值得注意的是,这些模型是令人印象深刻的图像生成模型(例如 Dalle2 和稳定扩散)背后的驱动力。我相信您已经看过这些模型生成的闪烁图像。令人惊叹的结果证明了深度学习的进步是多么令人兴奋。
上一篇ZZ介绍了本篇综述的背景知识和相关数学符号表示,了解到了本篇文章主要是关于基于“潜在结果框架”的因果推断方法综述,并且明确了样本,策略,潜在结果,混杂和混杂带来的辛普森悖论和选择性偏差等概念。下面我们书接上文,进入到解决因果推断问题具体的方法的解析,首先附一下上篇内容:因果推断文献解析|A Survey on Causal Inference(2),论文原文点击文末阅读原文即可查看。
如果直接使用线性回归的MSE会让逻辑回归的代价函数变成非凸函数,这样就会导致有非常多的局部最优值,导致梯度下降法失效。所以引入了交叉熵损失函数来替代线性回归的MSE(均方误差)
今天给大家介绍的是NATURE COMMUNICATIONS上有关数据增强的文章"State-of-the-art augmented NLP transformer models for direct and single-step retrosynthesis"
逆合成旨在找到一系列合适的反应物,以高效合成目标产物。这是解决有机合成路线的重要方法,也是有机合成路线设计的最简单、最基本的方法。
MLlib的设计原理:把数据以RDD的形式表示,然后在分布式数据集上调用各种算法。MLlib就是RDD上一系列可供调用的函数的集合。
“ 最近在学习数据分析的知识,接触到了一些简单的NLP问题,比如做一个文档分类器,预测文档属于某类的准确率,应该怎么做呢
copula是将多变量分布函数与其边缘分布函数耦合的函数,通常称为边缘。在本视频中,我们通过可视化的方式直观地介绍了Copula函数,并通过R软件应用于金融时间序列数据来理解它 。
选自machinelearningmastery 作者:Jason Brownlee 机器之心编译 参与:Panda 矩阵分解在机器学习应用中的重要性无需多言。本文对适用范围很广的奇异值分解方法进行了介绍,并通过代码演示说明了其工作方式、计算方法及其常见的几种基础应用。 矩阵分解也叫矩阵因子分解,涉及到用给定矩阵的组成元素描述该矩阵。 奇异值分解(SVD)可能是最著名和使用最广泛的矩阵分解方法。所有矩阵都有一种 SVD 方法,这使得其比特征分解(eigendecomposition)等其它方法更加稳定。因此
经济学家通过为人类受试者提供选择来套取他们的偏好。该技术广泛应用于产品设计、营销和交互式电子商务系统中。
整理自Andrew Ng的machine learning课程 week2. 目录: 多元线性回归 Multivariates linear regression /MLR Gradient descent for MLR Feature Scaling and Mean Normalization Ensure gradient descent work correctly Features and polynomial regression Normal Equation Vectorization 前
摘要:本文分别介绍了线性回归、局部加权回归和岭回归,并使用python进行了简单实现。
今天给大家介绍的是来自北京大学计算机系本科生史晨策等发表在ICML2020上的关于逆合成预测的一篇文章。在本文中,作者通过将目标分子图转化为一组反应物分子图,提出一种称为G2Gs的不依赖模板的框架以解决逆合成预测问题,该方法性能优越,排除了对领域知识的需要,并且具有很好的扩展性。
(本文基本逻辑:音频编码的理论基础 → PCM 编码 → AAC 编码工具集、编码流程、编码规格和数据格式)
实际上用强化学习训练智能体的时候,多数时候智能体都不能得到奖励。在不能得到奖励的情况下,训练智能体是非常困难的。例如,假设我们要训练一个机器臂,桌上有一个螺丝钉与一个螺丝起子,要训练它用螺丝起子把螺丝钉栓进去很难,因为一开始智能体是什么都不知道,它唯一能够做不同的动作的原因是探索。例如,我们在做 Q学习 的时候会有一些随机性,让它去采取一些过去没有采取过的动作,要随机到,它把螺丝起子捡起来,再把螺丝栓进去,就会得到奖励1,这件事情是永远不可能发生的。所以,不管演员做了什么事情,它得到的奖励永远都是 0,对它来说不管采取什么样的动作都是一样糟或者是一样好。所以,它最后什么都不会学到。
在机器学习中,有一种线性模型,被很多人、甚至不少书籍中,都称为“逻辑回归”,即将英文 Logistic 翻译为“逻辑”。周志华教授在《机器学习》中对此翻译提出了不同见解。本文将从更深刻的数学原理出发,推导此算法,并籍此理解 Logistic 并非“逻辑的”之意。
在前面的时间,我学习了Logistic回归,这是用来进行二分类学习的一种算法。虽然按照书上的介绍,编写了算法实现代码,但对其原理并不清楚,总感觉没有理解透。于是我又找到吴恩达的Marchine Learning课程,再次学习了线性回归和Logistic回归。
模仿学习(imitation learning,IL) 讨论的问题是,假设我们连奖励都没有,要怎么进行更新以及让智能体与环境交互呢?模仿学习又被称为示范学习(learning from demonstration),学徒学习(apprenticeship learning),观察学习(learning by watching)。在模仿学习中,有一些专家的示范,智能体也可以与环境交互,但它无法从环境里得到任何的奖励,它只能通过专家的示范来学习什么是好的,什么是不好的。其实,在多数情况下,我们都无法从环境里得到非常明确的奖励。例如,如果是棋类游戏或者是电玩,我们将会有非常明确的奖励。但是多数的情况都是没有奖励的,以聊天机器人为例,机器人与人聊天,聊得怎样算是好,聊得怎样算是不好,我们是无法给出明确的奖励的。
TLDR:针对传统推荐算法存在的表征能力有限、不确定性等挑战,本文提出一种利用扩散模型进行序列推荐的工作,该工作能够实现高质量、多样性的推荐效果。
HDR技术近年来发展迅猛,在未来将会成为图像与视频领域的主流。当前HDR内容非常短缺,限制了HDR视听节目的广泛应用。逆色调映射(Inverse Tone Mapping)应运而生,它是一种用来将SDR源信号转换为HDR源信号的技术,可以应用于生产端或终端设备,在一定程度上实现对现有SDR节目的HDR“还原”及向上兼容。本系列中,我们将会详细分类介绍逆色调映射算法。分为两个部分:(一)逆色调映射概述及一些经典算法,包括全局算法,分类算法以及拓展映射算法;(二)介绍最近的研究趋势,特别是基于机器学习的逆色调映射算法。Let's go for the first part!
胶囊网络是 Geoffrey Hinton 提出的一种新型神经网络结构,为了解决卷积神经网络(ConvNets)的一些缺点,提出了胶囊网络。
本文介绍由清华大学交叉信息科学研究所的Hantao Shu等人发表于Nature Computational Science的研究成果:本文作者提出了一个深度生成模型DeepSEM,它可以联合推断GRN和单细胞RNA测序数据的生物学表示。DeepSEM与最先进的方法相比,在各种单细胞计算任务上取得了相当或更好的性能。此外,DeepSEM在小鼠皮层数据上进行验证,进一步证明了该模型的准确性和效率。DeepSEM可以提供有用且强大的工具来分析细胞的scRNA-seq数据,同时可以推断细胞的GRN。
本文提出了一个有争议的问题:最优控制理论对于理解运动行为有用还是误导?随着人们开始将运动控制和感知的内部模型混为一谈,这个问题变得越来越尖锐(Poeppel 等,2008;Hickok 等,2011)。然而,运动控制中的前向模型并不是感知推理中使用的生成模型。本视角试图强调运动控制和感知的内部模型之间的差异,并询问最优控制是否是思考事物的正确方式。这里考虑的问题可能对最优决策理论和贝叶斯学习和行为方法产生更广泛的影响。
作者: 张聪 https://ask.hellobi.com/blog/zason/4543 深度学习在过去几年,由于卷积神经网络的特征提取能力让这个算法又火了一下,其实在很多年以前早就有所出现,但是
2021年6月,来自中科院上海药物所的蒋华良、郑明月等人在Drug Discovery Today发表综述,从分子打分、分子生成和优化、合成规划3个方面,介绍了GNN在从头药物设计中的应用,并探讨了该领域的当前挑战和未来方向。
本文转载于张聪的博客,链接:https://ask.hellobi.com/blog/zason/4543。
深度神经网络 (DNN) 和高斯过程 (GP)* 是两类具有高度表现力的监督学习算法。在考虑这些方法的应用时会出现一个自然的问题:“什么时候以及为什么使用一种算法比另一种更有意义?”
近年来,化学合成和数据科学的交叉导致了一些新兴工具的出现,包括用于逆合成和反应预测的算法,以及用于高通量、自动化合成的机器人。近日,来自美国密歇根大学安娜堡分校的Tim Cernak、普林斯顿大学的Abigail G. Doyle和加州大学伯克利分校的Richmond Sarpong合作在Nature Reviews Methods Primers 上发表Primer文章,总结当前计算机科学尤其是机器学习在逆合成(图1b)、反应预测(图1c)和自动化合成领域(图1d)的应用,旨在向非计算专家介绍化学信息学理论领域的现状,包括实验和理论方面,以及目前使用的自动化软件和硬件。
今天给大家介绍的是IBM欧洲研究院,伯尔尼大学以及比萨大学研究人员联合发表在Nature Machine Intelligence上的一篇文章。作者提出一种对化学反应数据集自动降噪的方法,并使用该方法对两个化学反应数据集(Pistachio和一个开源数据集)进行降噪并完成化学反应预测和逆合成设计任务,实验表明,在降噪后的数据集上训练的模型预测性能得到了改善。
领取专属 10元无门槛券
手把手带您无忧上云