发布
社区首页 >问答首页 >使用flow_from_directory进行多类和可变大小的图像分类

使用flow_from_directory进行多类和可变大小的图像分类
EN

Stack Overflow用户
提问于 2019-01-17 17:17:43
回答 1查看 2K关注 0票数 2

我有一个7级大小可变的图像。

调整大小是通过flow_from_directory完成的,但这里会弹出错误提示Error when checking target: expected activation_21 to have shape (1,) but got array with shape (7,)

文件夹:

代码语言:javascript
代码运行次数:0
复制
data/
    train/
        dogs/
            dog001.jpg
            dog002.jpg
            ...
        cats/
            cat001.jpg
            cat002.jpg
            ...
        sheep/
            sheep001.jpg
            sheep002.jpg
            ...
    validation/
        dogs/
            dog001.jpg
            dog002.jpg
            ...
        cats/
            cat001.jpg
            cat002.jpg
            ...
        sheep/
            sheep001.jpg
            sheep002.jpg
            ...

我的模型是一个简单的CNN:

代码语言:javascript
代码运行次数:0
复制
train_datagen = ImageDataGenerator(
        rescale=1./255,
        shear_range=0.2,
        zoom_range=0.2,
        horizontal_flip=True)

test_datagen = ImageDataGenerator(rescale=1./255)

train_generator = train_datagen.flow_from_directory(
        training_path,  # this is the target directory
        target_size=(200, 350),  # all images will be resized to 200x350
        batch_size=batch_size, class_mode='categorical'
        )  

validation_generator = test_datagen.flow_from_directory(
        validation_path,
        target_size=(200, 350),
        batch_size=batch_size,class_mode='categorical'
        )

model = Sequential()
model.add(Conv2D(32, (3, 3), input_shape=(200, 350, 3),data_format='channels_last'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Conv2D(64, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(GlobalMaxPooling2D())  # this converts our 3D feature maps to 1D feature vectors
model.add(Dense(64))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(7))
model.add(Activation('softmax'))

model.compile(loss='sparse_categorical_crossentropy',
              optimizer='rmsprop',
              metrics=['accuracy'])


model.fit_generator(
        train_generator,
        steps_per_epoch=500 // batch_size,
        epochs=10,
        validation_data=validation_generator,
        validation_steps=500 // batch_size)

模型摘要为:

代码语言:javascript
代码运行次数:0
复制
________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
conv2d_13 (Conv2D)           (None, 198, 348, 32)      896       
_________________________________________________________________
activation_17 (Activation)   (None, 198, 348, 32)      0         
_________________________________________________________________
max_pooling2d_13 (MaxPooling (None, 99, 174, 32)       0         
_________________________________________________________________
conv2d_14 (Conv2D)           (None, 97, 172, 32)       9248      
_________________________________________________________________
activation_18 (Activation)   (None, 97, 172, 32)       0         
_________________________________________________________________
max_pooling2d_14 (MaxPooling (None, 48, 86, 32)        0         
_________________________________________________________________
conv2d_15 (Conv2D)           (None, 46, 84, 64)        18496     
_________________________________________________________________
activation_19 (Activation)   (None, 46, 84, 64)        0         
_________________________________________________________________
max_pooling2d_15 (MaxPooling (None, 23, 42, 64)        0         
_________________________________________________________________
global_max_pooling2d_3 (Glob (None, 64)                0         
_________________________________________________________________
dense_5 (Dense)              (None, 64)                4160      
_________________________________________________________________
activation_20 (Activation)   (None, 64)                0         
_________________________________________________________________
dropout_3 (Dropout)          (None, 64)                0         
_________________________________________________________________
dense_6 (Dense)              (None, 7)                 455       
_________________________________________________________________
activation_21 (Activation)   (None, 7)                 0         
=================================================================
Total params: 33,255
Trainable params: 33,255
Non-trainable params: 0
_________________________________________________________________

我也试过生成单独的x_input和y_input np.arrays,但我不知道如何调整图像输入的大小,因为它们有不同的大小。因此,我不能获得一个4维的输入向量,这种方法给我的错误如下:

代码语言:javascript
代码运行次数:0
复制
Error when checking input: expected conv2d_16_input to have 4 dimensions, but got array with shape (5721, 1)
EN

回答 1

Stack Overflow用户

发布于 2019-01-17 17:37:52

您的代码需要保持一致,在flow_from_generator调用中,您将类模式设置为categorical,这将生成单热编码的类标签,但您使用的是sparse_categorical_crossentropy损失,它需要整数标签(而不是单热编码的标签)。

您可以将类模式设置为sparse以获得正确的标签,或者将损失更改为categorical_crossentropy

票数 3
EN
页面原文内容由Stack Overflow提供。腾讯云小微IT领域专用引擎提供翻译支持
原文链接:

https://stackoverflow.com/questions/54232549

复制
相关文章

相似问题

领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档