我正在尝试找出哪些变量会影响toAnalyse
变量。为此,我使用LogisticRegression方法。当我运行下面的代码时,我得到以下错误:
代码:
import numpy as np
import pandas as pd
from sklearn.datasets import load_breast_cancer
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
from matplotlib import rcParams
from sklearn.linear_model import LogisticRegression
rcParams['figure.figsize'] = 14, 7
rcParams['axes.spines.top'] = False
rcParams['axes.spines.right'] = False
data = pd.read_csv('file.txt', sep=",")
df = pd.concat([
pd.DataFrame(data, columns=data.columns),
pd.DataFrame(data, columns=['toAnalyse'])
], axis=1)
X = df.drop(['notimportant', 'test', 'toAnalyse'], axis=1)
y = df['toAnalyse']
#y.drop(y.columns[0], axis=1, inplace=True) <----------------- From 2 to 0 variables when running this?
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42)
ss = StandardScaler()
X_train_scaled = ss.fit_transform(X_train)
X_test_scaled = ss.transform(X_test)
错误:
ValueError: y should be a 1d array, got an array of shape (258631, 2) instead.
这似乎是正确的,因为当我打印y.info()
时,我会返回:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 344842 entries, 0 to 344841
Data columns (total 2 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 toAnalyse 343480 non-null float64
1 toAnalyse 343480 non-null float64
因此,toAnalyse
变量在y中出现了两次。好的,然后我想删除第一行(基于索引),这样我就只剩下一维的行了。然而,当我使用y.drop(y.columns[0], axis=1, inplace=True)
时,我得到的错误是它根本没有更多的变量:
ValueError: y should be a 1d array, got an array of shape (258631, 0) instead.
这是怎么回事,我怎么才能用一维数组来运行它呢?
发布于 2021-11-19 11:06:40
看起来像是在
df = pd.concat([
pd.DataFrame(data, columns=data.columns),
pd.DataFrame(data, columns=['toAnalyse'])
], axis=1)
您的数据帧中有两次'toAnalyse'
列。这就是y
最初形状错误的原因。当drop
查找列名时,在drop语句后没有列。
要解决这个问题,我只需使用df
删除该语句。data
似乎包含了您需要的所有内容,所以
X = data.drop(['notimportant', 'test', 'toAnalyse'], axis=1)
y = data['toAnalyse']
应该行得通。
https://stackoverflow.com/questions/70033489
复制相似问题