这是一个用Python和PyVista制作的霍普夫圆环:

import numpy as np
import pyvista as pv
A = 0.44
n = 3
def Gamma(t):
alpha = np.pi/2 - (np.pi/2-A)*np.cos(n*t)
beta = t + A*np.sin(2*n*t)
return np.array([
np.sin(alpha) * np.cos(beta),
np.sin(alpha) * np.sin(beta),
np.cos(alpha)
])
def HopfInverse(p, phi):
return np.array([
(1+p[2])*np.cos(phi),
p[0]*np.sin(phi) - p[1]*np.cos(phi),
p[0]*np.cos(phi) + p[1]*np.sin(phi),
(1+p[2])*np.sin(phi)
]) / np.sqrt(2*(1+p[2]))
def Stereo(q):
return 2*q[0:3] / (1-q[3])
def F(t, phi):
return Stereo(HopfInverse(Gamma(t), phi))
angle = np.linspace(0, 2 * np.pi, 300)
theta, phi = np.meshgrid(angle, angle)
x, y, z = F(theta, phi)
# Display the mesh
grid = pv.StructuredGrid(x, y, z)
grid.plot(smooth_shading=True)颜色并不是完全平滑的:在右下角的叶上,你可以看到一条线,它将浅灰色和深灰色分开。如何摆脱这条线?
发布于 2021-10-05 12:37:18
我认为这里发生的事情是,在结构化网格的两端相交的地方没有连接信息。解决此问题的一种方法是使用extract_geometry()方法将栅格转换为PolyData,然后使用具有更大容差的clean。这将迫使pyvista意识到网格中有一个接缝,其中点被加倍,导致点被合并,接缝关闭:
import numpy as np
import pyvista as pv
A = 0.44
n = 3
def Gamma(t):
alpha = np.pi/2 - (np.pi/2-A)*np.cos(n*t)
beta = t + A*np.sin(2*n*t)
return np.array([
np.sin(alpha) * np.cos(beta),
np.sin(alpha) * np.sin(beta),
np.cos(alpha)
])
def HopfInverse(p, phi):
return np.array([
(1+p[2])*np.cos(phi),
p[0]*np.sin(phi) - p[1]*np.cos(phi),
p[0]*np.cos(phi) + p[1]*np.sin(phi),
(1+p[2])*np.sin(phi)
]) / np.sqrt(2*(1+p[2]))
def Stereo(q):
return 2*q[0:3] / (1-q[3])
def F(t, phi):
return Stereo(HopfInverse(Gamma(t), phi))
angle = np.linspace(0, 2 * np.pi, 300)
theta, phi = np.meshgrid(angle, angle)
x, y, z = F(theta, phi)
# Display the mesh, show seam
grid = pv.StructuredGrid(x, y, z)
grid.plot(smooth_shading=True)
# convert to PolyData and clean to remove the seam
cleaned_poly = grid.extract_geometry().clean(tolerance=1e-6)
cleaned_poly.plot(smooth_shading=True)

tolerance参数的里程数可能会有所不同。
就像一件琐事,我们可以通过提取原始网格的特征边来可视化原始接缝:
grid.extract_feature_edges().plot()

这些曲线对应于原始栅格中的开放边:
>>> grid.extract_surface().n_open_edges
1196由于您的曲面是封闭且无间隙的,因此它应该有0个开放边:
>>> cleaned_poly.n_open_edges
0https://stackoverflow.com/questions/69447959
复制相似问题