本文从数值分析的角度对非线性打靶算法11.2进行了程序设计。然而,运行程序后,我得到的数值结果与教科书中的答案不同。我认为我的编码有问题,但我无法弄清楚。我在图片中附上了实际的算法。算法11.2 算法11.2 算法11.2
这是代码
from numpy import zeros, abs
def shoot_nonlinear(a,b,alpha, beta, n, tol, M):
w1 = zeros(n+1)
w2 = zeros(n+1)
h = (b-a)/n
k = 1
TK = (beta - alpha)/(b - a)
print("i"" x" " " "W1"" " "W2")
while k <= M:
w1[0] = alpha
w2[0] = TK
u1 = 0
u2 = 1
for i in range(1,n+1):
x = a + (i-1)*h #step 5
t = x + 0.5*(h)
k11 = h*w2[i-1] #step 6
k12 = h*f(x,w1[i-1],w2[i-1])
k21 = h*(w2[i-1] + (1/2)*k12)
k22 = h*f(t, w1[i-1] + (1/2)*k11, w2[i-1] + (1/2)*k12)
k31 = h*(w2[i-1] + (1/2)*k22)
k32 = h*f(t, w1[i-1] + (1/2)*k21, w2[i-1] + (1/2)*k22)
t = x + h
k41 = h*(w2[i-1]+k32)
k42 = h*f(t, w1[i-1] + k31, w2[i-1] + k32)
w1[i] = w1[i-1] + (k11 + 2*k21 + 2*k31 + k41)/6
w2[i] = w2[i-1] + (k12 + 2*k22 + 2*k32 + k42)/6
kp11 = h*u2
kp12 = h*(fy(x,w1[i-1],w2[i-1])*u1 + fyp(x,w1[i-1], w2[i-1])*u2)
t = x + 0.5*(h)
kp21 = h*(u2 + (1/2)*kp12)
kp22 = h*((fy(t, w1[i-1],w2[i-1])*(u1 + (1/2)*kp11)) + fyp(x+h/2, w1[i-1],w2[i-1])*(u2 +(1/2)*kp12))
kp31 = h*(u2 + (1/2)*kp22)
kp32 = h*((fy(t, w1[i-1],w2[i-1])*(u1 + (1/2)*kp21)) + fyp(x+h/2, w1[i-1],w2[i-1])*(u2 +(1/2)*kp22))
t = x + h
kp41 = h*(u2 + kp32)
kp42 = h*(fy(t, w1[i-1], w2[i-1])*(u1+kp31) + fyp(x + h, w1[i-1], w2[i-1])*(u2 + kp32))
u1 = u1 + (1/6)*(kp11 + 2*kp21 + 2*kp31 + kp41)
u2 = u2 + (1/6)*(kp12 + 2*kp22 + 2*kp32 + kp42)
r = abs(w1[n]) - beta
#print(r)
if r < tol:
for i in range(0,n+1):
x = a + i*h
print("%.2f %.2f %.4f %.4f" %(i,x,w1[i],w2[i]))
return
TK = TK -(w1[n]-beta)/u1
k = k+1
print("Maximum number of iterations exceeded")
return二阶边值问题的函数
def f(x,y,yp):
fx = (1/8)*(32 + 2*x**3 -y*yp)
return fx
def fy(xp,z,zp):
fyy = -(1/8)*(zp)
return fyy
def fyp(xpp,zpp,zppp):
fypp = -(1/8)*(zpp)
return fypp
a = 1 # start point
b = 3 # end point
alpha = 17 # boundary condition
beta = 43/3 # boundary condition
N = 20 # number of subintervals
M = 10 # maximum number of iterations
tol = 0.00001 # tolerance
shoot_nonlinear(a,b,alpha,beta,N,tol,M)我的结果
i x W1 W2
0.00 1.00 17.0000 -16.2058
1.00 1.10 15.5557 -12.8379
2.00 1.20 14.4067 -10.2482
3.00 1.30 13.4882 -8.1979
4.00 1.40 12.7544 -6.5327
5.00 1.50 12.1723 -5.1496
6.00 1.60 11.7175 -3.9773
7.00 1.70 11.3715 -2.9656
8.00 1.80 11.1203 -2.0783
9.00 1.90 10.9526 -1.2886
10.00 2.00 10.8600 -0.5768
11.00 2.10 10.8352 0.0723
12.00 2.20 10.8727 0.6700
13.00 2.30 10.9678 1.2251
14.00 2.40 11.1165 1.7444
15.00 2.50 11.3157 2.2331
16.00 2.60 11.5623 2.6951
17.00 2.70 11.8539 3.1337
18.00 2.80 12.1883 3.5513
19.00 2.90 12.5635 3.9498
20.00 3.00 12.9777 4.3306w1的实际结果
x W1
1.0 17.0000
1.1 15.7555
1.2 14.7734
1.3 13.3886
1.4 12.9167
1.5 12.5601
1.6 12.3018
1.7 12.1289
1.8 12.0311
1.9 12.0000
2.0 12.0291
2.1 12.1127
2.2 12.2465
2.3 12.4267
2.4 12.6500
2.5 12.9139
2.6 13.2159
2.7 13.5543
2.8 13.9272
2.9 14.3333
3.0 14.7713发布于 2019-03-01 20:24:07
在48号线上,你有
r = abs(w1[n]) - beta而不是
r = abs(w1[n] - beta)进行此更改与文本提供相同的解决方案,
x W1
1.0 17.0000
1.1 15.7555
1.2 14.7734
1.3 13.9978
1.4 13.3886
1.5 12.9167
1.6 12.5601
1.7 12.3018
1.8 12.1289
1.9 12.0311
2.0 12.0000
2.1 12.0291
2.2 12.1127
2.3 12.2465
2.4 12.4267
2.5 12.6500
2.6 12.9139
2.7 13.2159
2.8 13.5543
2.9 13.9272
3.0 14.3333发布于 2018-11-06 14:34:19
作为fx = ( 1/8 )*(32 + 2*x**3 -y*yp)中的注释,1/8将给出结果0。你应该用1.8代替。
https://stackoverflow.com/questions/53173945
复制相似问题