首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >问答首页 >基准和处理时间结果的差异

基准和处理时间结果的差异
EN

Stack Overflow用户
提问于 2017-01-12 03:38:21
回答 1查看 373关注 0票数 4

我一直在尝试对最有效的方法进行一些测试,以取代数据格式中的NA。

我首先比较了NA和0在1百万行12列数据集上的替代解决方案。将所有具有管道功能的管道扔到microbenchmark中,我得到了以下结果。

问题1:是否有方法测试benchmark函数中的左赋值语句子集(e.g.:df1is.na(df1) <- 0)?

代码语言:javascript
运行
复制
library(dplyr)
library(tidyr)
library(microbenchmark)

set.seed(24)
df1 <- as.data.frame(matrix(sample(c(NA, 1:5), 1e6 *12, replace=TRUE),
                            dimnames = list(NULL, paste0("var", 1:12)), ncol=12))

op <- microbenchmark(
    mut_all_ifelse   = df1 %>% mutate_all(funs(ifelse(is.na(.), 0, .))),
    mut_at_ifelse    = df1 %>% mutate_at(funs(ifelse(is.na(.), 0, .)), .cols = c(1:12)),
    # df1[is.na(df1)] <- 0 would sit here, but I can't make it work inside this function
    replace          = df1 %>% replace(., is.na(.), 0),
    mut_all_replace  = df1 %>% mutate_all(funs(replace(., is.na(.), 0))),
    mut_at_replace   = df1 %>% mutate_at(funs(replace(., is.na(.), 0)), .cols = c(1:12)),
    replace_na       = df1 %>% replace_na(list(var1 = 0, var2 = 0, var3 = 0, var4 = 0, var5 = 0, var6 = 0, var7 = 0, var8 = 0, var9 = 0, var10 = 0, var11 = 0, var12 = 0)),
    times = 1000L
)

print(op) #standard data frame of the output
    Unit: milliseconds
            expr       min       lq     mean   median       uq       max neval
  mut_all_ifelse 769.87848 844.5565 871.2476 856.0941 895.4545 1274.5610  1000
   mut_at_ifelse 713.48399 847.0322 875.9433 861.3224 899.7102 1006.6767  1000
         replace 258.85697 311.9708 334.2291 317.3889 360.6112  455.7596  1000
 mut_all_replace  96.81479 164.1745 160.6151 167.5426 170.5497  219.5013  1000
  mut_at_replace  96.23975 166.0804 161.9302 169.3984 172.7442  219.0359  1000
      replace_na 103.04600 161.2746 156.7804 165.1649 168.3683  210.9531  1000
boxplot(op) #boxplot of output

代码语言:javascript
运行
复制
library(ggplot2) #nice log plot of the output
qplot(y=time, data=op, colour=expr) + scale_y_log10()

为了测试子集赋值操作符,我最初运行了这些测试。

代码语言:javascript
运行
复制
set.seed(24) 
> Book1 <- as.data.frame(matrix(sample(c(NA, 1:5), 1e8 *12, replace=TRUE),
+ dimnames = list(NULL, paste0("var", 1:12)), ncol=12))
> system.time({ 
+     Book1 %>% mutate_all(funs(ifelse(is.na(.), 0, .))) })
   user  system elapsed 
  52.79   24.66   77.45 
> 
> system.time({ 
+     Book1 %>% mutate_at(funs(ifelse(is.na(.), 0, .)), .cols = c(1:12)) })
   user  system elapsed 
  52.74   25.16   77.91 
> 
> system.time({ 
+     Book1[is.na(Book1)] <- 0 })
   user  system elapsed 
  16.65    7.86   24.51 
> 
> system.time({ 
+     Book1 %>% replace_na(list(var1 = 0, var2 = 0, var3 = 0, var4 = 0, var5 = 0, var6 = 0, var7 = 0, var8 = 0, var9 = 0,var10 = 0, var11 = 0, var12 = 0)) })
   user  system elapsed 
   3.54    2.13    5.68 
> 
> system.time({ 
+     Book1 %>% mutate_at(funs(replace(., is.na(.), 0)), .cols = c(1:12)) })
   user  system elapsed 
   3.37    2.26    5.63 
> 
> system.time({ 
+     Book1 %>% mutate_all(funs(replace(., is.na(.), 0))) })
   user  system elapsed 
   3.33    2.26    5.58 
> 
> system.time({ 
+     Book1 %>% replace(., is.na(.), 0) })
   user  system elapsed 
   3.42    1.09    4.51 

在这些测试中,基本的replace()首先出现。在基准测试中,replace更落后,而tidyr replace_na() (通过鼻子)赢得了重复运行的奇异测试,并且在不同形状和大小的数据帧上总是发现基本的replace()处于领先地位。

问题2:,它的基准性能怎么可能是唯一与简单测试结果相去甚远的结果?

更令人困惑的是--问题3:,所有的mutate_all/_at(replace())怎么能比简单的replace()工作得更快?许多人报告说:http://datascience.la/dplyr-and-a-very-basic-benchmark/ (以及那篇文章中的所有链接),但是我仍然没有找到一个解释为什么会使用哈希和C++。

特别感谢泰勒林克:https://www.r-bloggers.com/microbenchmarking-with-r/和akrun:https://stackoverflow.com/a/41530071/5088194

EN

回答 1

Stack Overflow用户

回答已采纳

发布于 2017-01-13 11:09:53

您可以在microbenchmark中包含一个复杂/多个语句,方法是用{}包装它,该语句基本上转换为一个表达式:

代码语言:javascript
运行
复制
microbenchmark(expr1 = { df1[is.na(df1)] = 0 }, 
               exp2 = { tmp = 1:10; tmp[3] = 0L; tmp2 = tmp + 12L; tmp2 ^ 2 }, 
               times = 10)
#Unit: microseconds
#  expr        min         lq       mean     median         uq        max neval cld
# expr1 124953.716 137244.114 158576.030 142405.685 156744.076 284779.353    10   b
#  exp2      2.784      3.132     17.748     23.142     24.012     38.976    10  a 

值得注意的是这方面的副作用:

代码语言:javascript
运行
复制
tmp
#[1]  1  2  0  4  5  6  7  8  9 10

与之形成对比的是,比如说:

代码语言:javascript
运行
复制
rm(tmp)
microbenchmark(expr1 = { df1[is.na(df1)] = 0 },  
               exp2 = local({ tmp = 1:10; tmp[3] = 0L; tmp2 = tmp + 12L; tmp2 ^ 2 }), 
               times = 10)
#Unit: microseconds
#  expr       min         lq        mean     median         uq        max neval cld
# expr1 127250.18 132935.149 165296.3030 154509.553 169917.705 314820.306    10   b
#  exp2     10.44     12.181     42.5956     54.636     57.072     97.789    10  a 
tmp
#Error: object 'tmp' not found

注意到基准测试具有的副作用,我们看到删除NA值的第一个操作对于以下选项来说是一个相当轻松的工作:

代码语言:javascript
运行
复制
# re-assign because we changed it before
set.seed(24)
df1 = as.data.frame(matrix(sample(c(NA, 1:5), 1e6 * 12, TRUE), 
                           dimnames = list(NULL, paste0("var", 1:12)), ncol = 12))
unique(sapply(df1, typeof))
#[1] "integer"
any(sapply(df1, anyNA))
#[1] TRUE
system.time({ df1[is.na(df1)] <- 0 })
# user  system elapsed 
# 0.39    0.14    0.53 

以前的基准测试给我们留下了:

代码语言:javascript
运行
复制
unique(sapply(df1, typeof))
#[1] "double"
any(sapply(df1, anyNA))
#[1] FALSE

如果没有,则应该考虑替换NA,以便对输入不做任何操作。

除此之外,请注意,在所有的备选方案中,您都会为“整型”列向量(typeof(0))分配一个"double“(sapply(df1, typeof))。虽然我不认为在任何情况下(在上面的备选方案中) df1会被修改(因为在创建了一个"data.frame“之后,就有存储的信息来复制它的向量--如果修改的话,列),但是在强制使用”双重“和作为”双“存储的过程中,仍然是一个很小但可以避免的开销。R在替换“整型”向量中的元素之前,将分配和复制(在“整数”替换的情况下)或分配和强制(在“双”替换时)。此外,在第一次强制之后(如上文所述,来自基准的副作用),R将在"double"s上进行操作,所包含的操作比对“整型”的操作要慢。我找不到一种简单的R方法来研究这种差异,但简单地说(可能不完全准确),我们可以通过以下方法来模拟这些操作:

代码语言:javascript
运行
复制
# simulate R's copying of int to int
# allocate a new int and copy
int2int = inline::cfunction(sig = c(x = "integer"), body = '
    SEXP ans = PROTECT(allocVector(INTSXP, LENGTH(x)));
    memcpy(INTEGER(ans), INTEGER(x), LENGTH(x) * sizeof(int));
    UNPROTECT(1);
    return(ans);
')
# R's coercing of int to double
# 'coerceVector', internally, allocates a double and coerces to populate it
int2dbl = inline::cfunction(sig = c(x = "integer"), body = '
    SEXP ans = PROTECT(coerceVector(x, REALSXP));
    UNPROTECT(1);
    return(ans);
')
# simulate R's copying form double to double
dbl2dbl = inline::cfunction(sig = c(x = "double"), body = '
    SEXP ans = PROTECT(allocVector(REALSXP, LENGTH(x)));
    memcpy(REAL(ans), REAL(x), LENGTH(x) * sizeof(double));
    UNPROTECT(1);
    return(ans);
')

在一个基准上:

代码语言:javascript
运行
复制
x.int = 1:1e7; x.dbl = as.numeric(x.int)
microbenchmark(int2int(x.int), int2dbl(x.int), dbl2dbl(x.dbl), times = 50)
#Unit: milliseconds
#           expr      min       lq     mean   median       uq      max neval cld
# int2int(x.int) 16.42710 16.91048 21.93023 17.42709 19.38547 54.36562    50  a 
# int2dbl(x.int) 35.94064 36.61367 47.15685 37.40329 63.61169 78.70038    50   b
# dbl2dbl(x.dbl) 33.51193 34.18427 45.30098 35.33685 63.45788 75.46987    50   b

结束(!)用0代替0L可以节省一些时间.

最后,为了更公平地复制基准,我们可以使用:

代码语言:javascript
运行
复制
library(dplyr)
library(tidyr)
library(microbenchmark) 
set.seed(24)
df1 = as.data.frame(matrix(sample(c(NA, 1:5), 1e6 * 12, TRUE), 
                            dimnames = list(NULL, paste0("var", 1:12)), ncol = 12))

包装功能:

代码语言:javascript
运行
复制
stopifnot(ncol(df1) == 12)  #some of the alternatives are hardcoded to 12 columns
mut_all_ifelse = function(x, val) x %>% mutate_all(funs(ifelse(is.na(.), val, .)))
mut_at_ifelse = function(x, val) x %>% mutate_at(funs(ifelse(is.na(.), val, .)), .cols = c(1:12))
baseAssign = function(x, val) { x[is.na(x)] <- val; x }
baseFor = function(x, val) { for(j in 1:ncol(x)) x[[j]][is.na(x[[j]])] = val; x }
base_replace = function(x, val) x %>% replace(., is.na(.), val)
mut_all_replace = function(x, val) x %>% mutate_all(funs(replace(., is.na(.), val)))
mut_at_replace = function(x, val) x %>% mutate_at(funs(replace(., is.na(.), val)), .cols = c(1:12))
myreplace_na = function(x, val) x %>% replace_na(list(var1 = val, var2 = val, var3 = val, var4 = val, var5 = val, var6 = val, var7 = val, var8 = val, var9 = val, var10 = val, var11 = val, var12 = val))

在基准之前检验结果是否平等:

代码语言:javascript
运行
复制
identical(mut_all_ifelse(df1, 0), mut_at_ifelse(df1, 0))
#[1] TRUE
identical(mut_at_ifelse(df1, 0), baseAssign(df1, 0))
#[1] TRUE
identical(baseAssign(df1, 0), baseFor(df1, 0))
#[1] TRUE
identical(baseFor(df1, 0), base_replace(df1, 0))
#[1] TRUE
identical(base_replace(df1, 0), mut_all_replace(df1, 0))
#[1] TRUE
identical(mut_all_replace(df1, 0), mut_at_replace(df1, 0))
#[1] TRUE
identical(mut_at_replace(df1, 0), myreplace_na(df1, 0))
#[1] TRUE

胁迫测试为“双”:

代码语言:javascript
运行
复制
benchnum = microbenchmark(mut_all_ifelse(df1, 0), 
                          mut_at_ifelse(df1, 0), 
                          baseAssign(df1, 0), 
                          baseFor(df1, 0),
                          base_replace(df1, 0), 
                          mut_all_replace(df1, 0),
                          mut_at_replace(df1, 0), 
                          myreplace_na(df1, 0),
                          times = 10)
benchnum
#Unit: milliseconds
#                    expr       min        lq      mean    median        uq       max neval cld
#  mut_all_ifelse(df1, 0) 1368.5091 1441.9939 1497.5236 1509.2233 1550.1416 1629.6959    10   c
#   mut_at_ifelse(df1, 0) 1366.1674 1389.2256 1458.1723 1464.5962 1503.4337 1553.7110    10   c
#      baseAssign(df1, 0)  532.4975  548.9444  586.8198  564.3940  655.8083  667.8634    10  b 
#         baseFor(df1, 0)  169.6048  175.9395  206.7038  189.5428  197.6472  308.6965    10 a  
#    base_replace(df1, 0)  518.7733  547.8381  597.8842  601.1544  643.4970  666.6872    10  b 
# mut_all_replace(df1, 0)  169.1970  183.5514  227.1978  194.0903  291.6625  346.4649    10 a  
#  mut_at_replace(df1, 0)  176.7904  186.4471  227.3599  202.9000  303.4643  309.2279    10 a  
#    myreplace_na(df1, 0)  172.4926  177.8518  199.1469  186.3645  192.1728  297.0419    10 a

不强迫“加倍”的测试:

代码语言:javascript
运行
复制
benchint = microbenchmark(mut_all_ifelse(df1, 0L), 
                          mut_at_ifelse(df1, 0L), 
                          baseAssign(df1, 0L), 
                          baseFor(df1, 0L),
                          base_replace(df1, 0L), 
                          mut_all_replace(df1, 0L),
                          mut_at_replace(df1, 0L),
                          myreplace_na(df1, 0L),
                          times = 10)
benchint
#Unit: milliseconds
#                     expr        min        lq      mean    median        uq       max neval cld
#  mut_all_ifelse(df1, 0L) 1291.17494 1313.1910 1377.9265 1353.2812 1417.4389 1554.6110    10   c
#   mut_at_ifelse(df1, 0L) 1295.34053 1315.0308 1372.0728 1353.0445 1431.3687 1478.8613    10   c
#      baseAssign(df1, 0L)  451.13038  461.9731  477.3161  471.0833  484.9318  528.4976    10  b 
#         baseFor(df1, 0L)   98.15092  102.4996  115.7392  107.9778  136.2227  139.7473    10 a  
#    base_replace(df1, 0L)  428.54747  451.3924  471.5011  470.0568  497.7088  516.1852    10  b 
# mut_all_replace(df1, 0L)  101.66505  102.2316  137.8128  130.5731  161.2096  243.7495    10 a  
#  mut_at_replace(df1, 0L)  103.79796  107.2533  119.1180  112.1164  127.7959  166.9113    10 a  
#    myreplace_na(df1, 0L)  100.03431  101.6999  120.4402  121.5248  137.1710  141.3913    10 a

还有一种简单的可视化方法:

代码语言:javascript
运行
复制
boxplot(benchnum, ylim = range(min(summary(benchint)$min, summary(benchnum)$min),
                               max(summary(benchint)$max, summary(benchnum)$max)))
boxplot(benchint, add = TRUE, border = "red", axes = FALSE) 
legend("topright", c("coerce", "not coerce"), fill = c("black", "red"))                       

注意,在这一切之后,df1是不变的(str(df1))。

票数 4
EN
页面原文内容由Stack Overflow提供。腾讯云小微IT领域专用引擎提供翻译支持
原文链接:

https://stackoverflow.com/questions/41604711

复制
相关文章

相似问题

领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档