首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >问答首页 >在世界杯组内生成配对

在世界杯组内生成配对
EN

Stack Overflow用户
提问于 2015-06-02 21:04:47
回答 2查看 653关注 0票数 2

我收集了一些2015年国际足联女足世界杯的数据:

代码语言:javascript
复制
import pandas as pd

df = pd.DataFrame({
    'team':['Germany','USA','France','Japan','Sweden','England','Brazil','Canada','Australia','Norway','Netherlands','Spain',
       'China','New Zealand','South Korea','Switzerland','Mexico','Colombia','Thailand','Nigeria','Ecuador','Ivory Coast','Cameroon','Costa Rica'],
    'group':['B','D','F','C','D','F','E','A','D','B','A','E','A','A','E','C','F','F','B','D','C','B','C','E'],
    'fifascore':[2168,2158,2103,2066,2008,2001,1984,1969,1968,1933,1919,1867,1847,1832,1830,1813,1748,1692,1651,1633,1485,1373,1455,1589],
    'ftescore':[95.6,95.4,92.4,92.7,91.6,89.6,92.2,90.1,88.7,88.7,86.2,84.7,85.2,82.5,84.3,83.7,81.1,78.0,68.0,85.7,63.3,75.6,79.3,72.8]
    })

df.groupby(['group', 'team']).mean()

现在,我想生成一个新的数据格式,其中包含来自group的每个df中的6个可能的配对或匹配,格式如下:

代码语言:javascript
复制
group    team1        team2
A        Canada       China
A        Canada       Netherlands
A        Canada       New Zealand
A        China        Netherlands
A        China        New Zealand
A        Netherlands  New Zealand
B        Germany      Ivory Coast
B        Germany      Norway
...     

做这件事的简明扼要的方法是什么?我可以在每个groupteam中执行一串循环,但是我觉得应该有一种更清晰的矢量化方法来使用pandas分割-应用-联合范例来实现这一点。

编辑:我也欢迎任何R的答案,认为在这里比较R和Pandas的方式会很有趣。添加了r标记。

以下是R格式的数据,如注释中所要求的那样:

代码语言:javascript
复制
team <- c('Germany','USA','France','Japan','Sweden','England','Brazil','Canada','Australia','Norway','Netherlands','Spain',
      'China','New Zealand','South Korea','Switzerland','Mexico','Colombia','Thailand','Nigeria','Ecuador','Ivory Coast','Cameroon','Costa Rica')
group <- c('B','D','F','C','D','F','E','A','D','B','A','E','A','A','E','C','F','F','B','D','C','B','C','E')
fifascore <- c(2168,2158,2103,2066,2008,2001,1984,1969,1968,1933,1919,1867,1847,1832,1830,1813,1748,1692,1651,1633,1485,1373,1455,1589)
ftescore <- c(95.6,95.4,92.4,92.7,91.6,89.6,92.2,90.1,88.7,88.7,86.2,84.7,85.2,82.5,84.3,83.7,81.1,78.0,68.0,85.7,63.3,75.6,79.3,72.8)

df <- data.frame(team, group, fifascore, ftescore)
EN

回答 2

Stack Overflow用户

回答已采纳

发布于 2015-06-02 21:23:23

以下是两行解决方案:

代码语言:javascript
复制
import itertools

for grpname,grpteams in df.groupby('group')['team']:
    # No need to use grpteams.tolist() to convert from pandas Series to Python list
    print list(itertools.combinations(grpteams, 2))

[('Canada', 'Netherlands'), ('Canada', 'China'), ('Canada', 'New Zealand'), ('Netherlands', 'China'), ('Netherlands', 'New Zealand'), ('China', 'New Zealand')]
[('Germany', 'Norway'), ('Germany', 'Thailand'), ('Germany', 'Ivory Coast'), ('Norway', 'Thailand'), ('Norway', 'Ivory Coast'), ('Thailand', 'Ivory Coast')]
[('Japan', 'Switzerland'), ('Japan', 'Ecuador'), ('Japan', 'Cameroon'), ('Switzerland', 'Ecuador'), ('Switzerland', 'Cameroon'), ('Ecuador', 'Cameroon')]
[('USA', 'Sweden'), ('USA', 'Australia'), ('USA', 'Nigeria'), ('Sweden', 'Australia'), ('Sweden', 'Nigeria'), ('Australia', 'Nigeria')]
[('Brazil', 'Spain'), ('Brazil', 'South Korea'), ('Brazil', 'Costa Rica'), ('Spain', 'South Korea'), ('Spain', 'Costa Rica'), ('South Korea', 'Costa Rica')]
[('France', 'England'), ('France', 'Mexico'), ('France', 'Colombia'), ('England', 'Mexico'), ('England', 'Colombia'), ('Mexico', 'Colombia')]

解释:

首先,我们使用df.groupby('group')获得每个组中的团队列表,迭代并访问其'team‘系列,以获得每个组中的4个团队的列表:

代码语言:javascript
复制
for grpname,grpteams in df.groupby('group')['team']:
    teamlist = grpteams.tolist()
... 
['Canada', 'Netherlands', 'China', 'New Zealand']
['Germany', 'Norway', 'Thailand', 'Ivory Coast']
['Japan', 'Switzerland', 'Ecuador', 'Cameroon']
['USA', 'Sweden', 'Australia', 'Nigeria']
['Brazil', 'Spain', 'South Korea', 'Costa Rica']
['France', 'England', 'Mexico', 'Colombia']

然后,我们生成了全场所有的元组的列表。大卫·阿伦堡的帖子提醒我要使用itertools.combinations(..., 2)。但我们可以使用生成器或嵌套的for-循环:

代码语言:javascript
复制
def all_play_all(teams):
  for team1 in teams:
    for team2 in teams:
      if team1 < team2: # [Note] We don't need to generate indices then index into teamlist, just use direct string comparison
        yield (team1,team2)

>>> [match for match in all_play_all(grpteams)]
[('France', 'Mexico'), ('England', 'France'), ('England', 'Mexico'), ('Colombia', 'France'), ('Colombia', 'England'), ('Colombia', 'Mexico')]

注意,我们正在采取一种捷径,首先生成所有可能的索引元组,然后使用这些元组索引到工作组列表中:

代码语言:javascript
复制
>>> T = len(teamlist) + 1
>>> [(i,j) for i in range(T) for j in range(T) if i<j]
[(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)]

(注:如果我们使用直接比较团队名称的方法,就会产生(按字母顺序)组名的轻微副作用(它们最初是按种子排序,而不是按字母顺序排序)。‘中国’<‘荷兰’,所以他们的配对将出现在(‘荷兰’,‘中国’)而不是(‘中国’,荷兰)

票数 3
EN

Stack Overflow用户

发布于 2015-06-02 21:34:35

使用R,这里有一个可能的data.table解决方案,使用它在GitHub上的开发版本

代码语言:javascript
复制
#### To install development version
## library(devtools)
## install_github("Rdatatable/data.table", build_vignettes = FALSE)

library(data.table) ## v >= 1.9.5
setDT(df)[, transpose(combn(team, 2L, simplify = FALSE)), keyby = group]
#    group          V1          V2
# 1:     A      Canada Netherlands
# 2:     A      Canada       China
# 3:     A      Canada New Zealand
# 4:     A Netherlands       China
# 5:     A Netherlands New Zealand
# 6:     A       China New Zealand
# 7:     B     Germany      Norway
# 8:     B     Germany    Thailand
...
票数 3
EN
页面原文内容由Stack Overflow提供。腾讯云小微IT领域专用引擎提供翻译支持
原文链接:

https://stackoverflow.com/questions/30606566

复制
相关文章

相似问题

领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档