考虑一下这个数组:
a = np.array([1,2,3,4,3,2,1])
我想要得到均分数组的元素,即元素之前的数组之和等于数组后面数组的和。在本例中,第4个元素a[3]
均匀地划分数组。有没有一种更快的方法来做到这一点?还是必须对所有元素进行迭代?
期望的功能:
f(a) = 3
发布于 2015-05-19 08:30:38
如果所有的输入值都是非负的,那么最有效的方法之一似乎是构建一个累积和数组,然后二进制搜索它的位置,两边之和的一半。然而,也很容易搞错这样的二进制搜索。在尝试让二进制搜索在所有边缘情况下工作时,我最后进行了以下测试:
class SplitpointTest(unittest.TestCase):
def testFloatRounding(self):
# Due to rounding error, the cumulative sums for these inputs are
# [1.1, 3.3000000000000003, 3.3000000000000003, 5.5, 6.6]
# and [0.1, 0.7999999999999999, 0.7999999999999999, 1.5, 1.6]
# Note that under default settings, numpy won't display
# enough precision to see that.
self.assertEquals(2, splitpoint([1.1, 2.2, 1e-20, 2.2, 1.1]))
self.assertEquals(2, splitpoint([0.1, 0.7, 1e-20, 0.7, 0.1]))
def testIntRounding(self):
self.assertEquals(1, splitpoint([1, 1, 1]))
def testIntPrecision(self):
self.assertEquals(2, splitpoint([2**60, 1, 1, 1, 2**60]))
def testIntMax(self):
self.assertEquals(
2,
splitpoint(numpy.array([40, 23, 1, 63], dtype=numpy.int8))
)
def testIntZeros(self):
self.assertEquals(
4,
splitpoint(numpy.array([0, 1, 0, 2, 0, 2, 0, 1], dtype=int))
)
def testFloatZeros(self):
self.assertEquals(
4,
splitpoint(numpy.array([0, 1, 0, 2, 0, 2, 0, 1], dtype=float))
)
在决定不值得之前,我看了以下几个版本:
def splitpoint(a):
c = numpy.cumsum(a)
return numpy.searchsorted(c, c[-1]/2)
# Fails on [1, 1, 1]
def splitpoint(a):
c = numpy.cumsum(a)
return numpy.searchsorted(c, c[-1]/2.0)
# Fails on [2**60, 1, 1, 1, 2**60]
def splitpoint(a):
c = numpy.cumsum(a)
if c.dtype.kind == 'f':
# Floating-point input.
return numpy.searchsorted(c, c[-1]/2.0)
elif c.dtype.kind in ('i', 'u'):
# Integer input.
return numpy.searchsorted(c, (c[-1]+1)//2)
else:
# Probably an object dtype. No great options.
return numpy.searchsorted(c, c[-1]/2.0)
# Fails on numpy.array([63, 1, 63], dtype=int8)
def splitpoint(a):
c = numpy.cumsum(a)
if c.dtype.kind == 'f':
# Floating-point input.
return numpy.searchsorted(c, c[-1]/2.0)
elif c.dtype.kind in ('i', 'u'):
# Integer input.
return numpy.searchsorted(c, c[-1]//2 + c[-1]%2)
else:
# Probably an object dtype. No great options.
return numpy.searchsorted(c, c[-1]/2.0)
# Still fails the floating-point rounding and zeros tests.
如果我继续努力的话,我也许能让它发挥作用,但这是不值得的。the 21的第二个解决方案是基于显式最小化左和和绝对差的解,它更容易推理,也更适用。添加了a = numpy.asarray(a)
后,它通过了上述所有测试用例和以下测试,这些测试扩展了该算法需要处理的输入类型:
class SplitpointGeneralizedTest(unittest.TestCase):
def testNegatives(self):
self.assertEquals(2, splitpoint([-1, 5, 2, 4]))
def testComplex(self):
self.assertEquals(2, splitpoint([1+1j, -5+2j, 43, -4+3j]))
def testObjectDtype(self):
from fractions import Fraction
from decimal import Decimal
self.assertEquals(2, splitpoint(map(Fraction, [1.5, 2.5, 3.5, 4])))
self.assertEquals(2, splitpoint(map(Decimal, [1.5, 2.5, 3.5, 4])))
除非特别发现它太慢,否则我会使用chw21 21的第二个解决方案。在我测试它的稍微修改的形式中,这将是如下所示:
def splitpoint(a):
a = np.asarray(a)
c1 = a.cumsum()
c2 = a[::-1].cumsum()[::-1]
return np.argmin(np.abs(c1-c2))
我能看到的唯一缺陷是,如果输入有一个无符号的dtype,并且没有精确分割输入的索引,则该算法可能不会返回与拆分输入最接近的索引,因为np.abs(c1-c2)
没有对无符号数据类型执行正确的操作。在没有拆分索引的情况下,从来没有指定算法应该做什么,所以这种行为是可以接受的,尽管它可能值得在注释中记录一下np.abs(c1-c2)
和无符号的dtype。如果我们想要最接近分割输入的索引,我们可以以额外的运行时为代价获得它:
def splitpoint(a):
a = np.asarray(a)
c1 = a.cumsum()
c2 = a[::-1].cumsum()[::-1]
if a.dtype.kind == 'u':
# np.abs(c1-c2) doesn't work on unsigned ints
absdiffs = np.where(c1>c2, c1-c2, c2-c1)
else:
# c1>c2 doesn't work on complex input.
# We also use this case for other dtypes, since it's
# probably faster.
absdiffs = np.abs(c1-c2)
return np.argmin(absdiffs)
当然,下面是对此行为的测试,修改后的表单通过,而未修改的表单失败:
class SplitpointUnsignedTest(unittest.TestCase):
def testBestApproximation(self):
self.assertEquals(1, splitpoint(numpy.array([5, 5, 4, 5], dtype=numpy.uint32)))
发布于 2015-05-19 04:46:06
我会去做这样的事:
def equib(a):
c = a.cumsum()
return np.argmin(np.abs(c-(c[-1]/2)))
首先,我们建立了a
的累积和。Cumsum意思是c[i] = sum(a[:i])
。而不是我们所看到的绝对值,数值和总重量之间的差异变得最小。
Update @DSM注意到我的第一个版本有一点偏移,下面是另一个版本:
def equib(a):
c1 = a.cumsum()
c2 = a[::-1].cumsum()[::-1]
return np.argmin(np.abs(c1-c2))
发布于 2018-06-20 16:02:09
您可以从下面的代码中找到平衡点。
a = [1,3,5,2,2]
b = equilibirum(a)
n = len(a)
first_sum = 0
last_sum = 0
if n==1:
print (1)
return 0
for i in range(n):
first_sum=first_sum+a[i]
for j in range(i+2,n):
last_sum=last_sum+a[j]
if first_sum ==last_sum:
s=i+2
print (s)
return 0
last_sum=0
https://stackoverflow.com/questions/30316867
复制相似问题