首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >问答首页 >具有复制的Matlab - 2D卷积矩阵

具有复制的Matlab - 2D卷积矩阵
EN

Stack Overflow用户
提问于 2014-10-01 21:49:38
回答 2查看 1K关注 0票数 1

如何在Matlab中得到一个用复制表示2d卷积的二维卷积矩阵。所以我想要的是这样的东西:

代码语言:javascript
运行
复制
T = getConvMtx(H, m, n);
res1 = T * im;
res2 = imfilter(im, H, 'replicate');

并使res1res2有效相等。

Matlab的convmtx2实现给出了一个假定零填充的卷积矩阵。

我已经将我的实现作为答案之一,尽管它效率极低。这就是为什么我会重视、反馈和建议一个更好的方法。

EN

回答 2

Stack Overflow用户

回答已采纳

发布于 2014-10-01 21:49:38

以下是我如何设法获得所需的结果。然而,它效率很低,因此任何反馈意见和建议都是非常欢迎的:

代码语言:javascript
运行
复制
function T = getConvMtx(H,m,n)

vHalfKerSz = floor(size(H) / 2);

mInds = reshape(1:m*n, m, n);
mInds = padarray(mInds, vHalfKerSz, 'replicate');

Tcols = zeros(m*n*numel(H), 1);
Trows = zeros(m*n*numel(H), 1);
Tvals = zeros(m*n*numel(H), 1);

i = 0; p = 0;
for c = 1:n
    for r = 1:m
        p = p + 1;

        mKerInds = mInds(r:r+size(H,1)-1, c:c+size(H,2)-1);

        [U, ~, ic] = unique(mKerInds(:));

        for k = 1:length(U)
            i = i + 1;
            Tcols(i) = U(k);
            Trows(i) = p;
            Tvals(i) = sum(H(mKerInds == U(k)));
        end
    end
end

T = sparse(Trows(1:i), Tcols(1:i), Tvals(1:i), m*n, m*n);

end

以及一些示例用法:

代码语言:javascript
运行
复制
n = 100;
im = rand(n);
h = fspecial('gaussian', 5, 1);

mConvMtx = getConvMtx(h, n, n);
im2 = reshape(mConvMtx * im(:), size(im));

im3 = imfilter(im, h, 'replicate');

% figure;imshow(im3);
% figure;imshow(im2);
sum(abs(im2(:) - im3(:)))  %will give a very small number due to precision issues

以下是按顺序排列的结果(imim2im3):

票数 3
EN

Stack Overflow用户

发布于 2019-01-15 19:23:20

我创建了一个函数来创建用于图像过滤的矩阵(类似于MATLAB的imfilter()):

代码语言:javascript
运行
复制
function [ mK ] = CreateImageFilterMtx( mH, numRows, numCols, operationMode, boundaryMode )
%UNTITLED6 Summary of this function goes here
%   Detailed explanation goes here

OPERATION_MODE_CONVOLUTION = 1;
OPERATION_MODE_CORRELATION = 2;

BOUNDARY_MODE_ZEROS         = 1;
BOUNDARY_MODE_SYMMETRIC     = 2;
BOUNDARY_MODE_REPLICATE     = 3;
BOUNDARY_MODE_CIRCULAR      = 4;

switch(operationMode)
    case(OPERATION_MODE_CONVOLUTION)
        mH = mH(end:-1:1, end:-1:1);
    case(OPERATION_MODE_CORRELATION)
        % mH = mH; %<! Default Code is correlation
end

switch(boundaryMode)
    case(BOUNDARY_MODE_ZEROS)
        mK = CreateConvMtxZeros(mH, numRows, numCols);
    case(BOUNDARY_MODE_SYMMETRIC)
        mK = CreateConvMtxSymmetric(mH, numRows, numCols);
    case(BOUNDARY_MODE_REPLICATE)
        mK = CreateConvMtxReplicate(mH, numRows, numCols);
    case(BOUNDARY_MODE_CIRCULAR)
        mK = CreateConvMtxCircular(mH, numRows, numCols);
end


end


function [ mK ] = CreateConvMtxZeros( mH, numRows, numCols )
%UNTITLED6 Summary of this function goes here
%   Detailed explanation goes here

numElementsImage    = numRows * numCols;
numRowsKernel       = size(mH, 1);
numColsKernel       = size(mH, 2);
numElementsKernel   = numRowsKernel * numColsKernel;

vRows = reshape(repmat(1:numElementsImage, numElementsKernel, 1), numElementsImage * numElementsKernel, 1);
vCols = zeros(numElementsImage * numElementsKernel, 1);
vVals = zeros(numElementsImage * numElementsKernel, 1);

kernelRadiusV = floor(numRowsKernel / 2);
kernelRadiusH = floor(numColsKernel / 2);

pxIdx       = 0;
elmntIdx    = 0;

for jj = 1:numCols
    for ii = 1:numRows
        pxIdx = pxIdx + 1;
        for ll = -kernelRadiusH:kernelRadiusH
            for kk = -kernelRadiusV:kernelRadiusV
                elmntIdx = elmntIdx + 1;

                pxShift = (ll * numCols) + kk;

                if((ii + kk <= numRows) && (ii + kk >= 1) && (jj + ll <= numCols) && (jj + ll >= 1))
                    vCols(elmntIdx) = pxIdx + pxShift;
                    vVals(elmntIdx) = mH(kk + kernelRadiusV + 1, ll + kernelRadiusH + 1);
                else
                    vCols(elmntIdx) = pxIdx;
                    vVals(elmntIdx) = 0; % See the accumulation property of 'sparse()'.
                end
            end
        end
    end
end

mK = sparse(vRows, vCols, vVals, numElementsImage, numElementsImage);


end


function [ mK ] = CreateConvMtxSymmetric( mH, numRows, numCols )
%UNTITLED6 Summary of this function goes here
%   Detailed explanation goes here

numElementsImage    = numRows * numCols;
numRowsKernel       = size(mH, 1);
numColsKernel       = size(mH, 2);
numElementsKernel   = numRowsKernel * numColsKernel;

vRows = reshape(repmat(1:numElementsImage, numElementsKernel, 1), numElementsImage * numElementsKernel, 1);
vCols = zeros(numElementsImage * numElementsKernel, 1);
vVals = zeros(numElementsImage * numElementsKernel, 1);

kernelRadiusV = floor(numRowsKernel / 2);
kernelRadiusH = floor(numColsKernel / 2);

pxIdx       = 0;
elmntIdx    = 0;

for jj = 1:numCols
    for ii = 1:numRows
        pxIdx = pxIdx + 1;
        for ll = -kernelRadiusH:kernelRadiusH
            for kk = -kernelRadiusV:kernelRadiusV
                elmntIdx = elmntIdx + 1;

                pxShift = (ll * numCols) + kk;

                if(ii + kk > numRows)
                    pxShift = pxShift - (2 * (ii + kk - numRows) - 1);
                end

                if(ii + kk < 1)
                    pxShift = pxShift + (2 * (1 -(ii + kk)) - 1);
                end

                if(jj + ll > numCols)
                    pxShift = pxShift - ((2 * (jj + ll - numCols) - 1) * numCols);
                end

                if(jj + ll < 1)
                    pxShift = pxShift + ((2 * (1 - (jj + ll)) - 1) * numCols);
                end

                vCols(elmntIdx) = pxIdx + pxShift;
                vVals(elmntIdx) = mH(kk + kernelRadiusV + 1, ll + kernelRadiusH + 1);

            end
        end
    end
end

mK = sparse(vRows, vCols, vVals, numElementsImage, numElementsImage);


end


function [ mK ] = CreateConvMtxReplicate( mH, numRows, numCols )
%UNTITLED6 Summary of this function goes here
%   Detailed explanation goes here

numElementsImage    = numRows * numCols;
numRowsKernel       = size(mH, 1);
numColsKernel       = size(mH, 2);
numElementsKernel   = numRowsKernel * numColsKernel;

vRows = reshape(repmat(1:numElementsImage, numElementsKernel, 1), numElementsImage * numElementsKernel, 1);
vCols = zeros(numElementsImage * numElementsKernel, 1);
vVals = zeros(numElementsImage * numElementsKernel, 1);

kernelRadiusV = floor(numRowsKernel / 2);
kernelRadiusH = floor(numColsKernel / 2);

pxIdx       = 0;
elmntIdx    = 0;

for jj = 1:numCols
    for ii = 1:numRows
        pxIdx = pxIdx + 1;
        for ll = -kernelRadiusH:kernelRadiusH
            for kk = -kernelRadiusV:kernelRadiusV
                elmntIdx = elmntIdx + 1;

                pxShift = (ll * numCols) + kk;

                if(ii + kk > numRows)
                    pxShift = pxShift - (ii + kk - numRows);
                end

                if(ii + kk < 1)
                    pxShift = pxShift + (1 -(ii + kk));
                end

                if(jj + ll > numCols)
                    pxShift = pxShift - ((jj + ll - numCols) * numCols);
                end

                if(jj + ll < 1)
                    pxShift = pxShift + ((1 - (jj + ll)) * numCols);
                end

                vCols(elmntIdx) = pxIdx + pxShift;
                vVals(elmntIdx) = mH(kk + kernelRadiusV + 1, ll + kernelRadiusH + 1);

            end
        end
    end
end

mK = sparse(vRows, vCols, vVals, numElementsImage, numElementsImage);


end


function [ mK ] = CreateConvMtxCircular( mH, numRows, numCols )
%UNTITLED6 Summary of this function goes here
%   Detailed explanation goes here

numElementsImage    = numRows * numCols;
numRowsKernel       = size(mH, 1);
numColsKernel       = size(mH, 2);
numElementsKernel   = numRowsKernel * numColsKernel;

vRows = reshape(repmat(1:numElementsImage, numElementsKernel, 1), numElementsImage * numElementsKernel, 1);
vCols = zeros(numElementsImage * numElementsKernel, 1);
vVals = zeros(numElementsImage * numElementsKernel, 1);

kernelRadiusV = floor(numRowsKernel / 2);
kernelRadiusH = floor(numColsKernel / 2);

pxIdx       = 0;
elmntIdx    = 0;

for jj = 1:numCols
    for ii = 1:numRows
        pxIdx = pxIdx + 1;
        for ll = -kernelRadiusH:kernelRadiusH
            for kk = -kernelRadiusV:kernelRadiusV
                elmntIdx = elmntIdx + 1;

                pxShift = (ll * numCols) + kk;

                if(ii + kk > numRows)
                    pxShift = pxShift - numRows;
                end

                if(ii + kk < 1)
                    pxShift = pxShift + numRows;
                end

                if(jj + ll > numCols)
                    pxShift = pxShift - (numCols * numCols);
                end

                if(jj + ll < 1)
                    pxShift = pxShift + (numCols * numCols);
                end

                vCols(elmntIdx) = pxIdx + pxShift;
                vVals(elmntIdx) = mH(kk + kernelRadiusV + 1, ll + kernelRadiusH + 1);

            end
        end
    end
end

mK = sparse(vRows, vCols, vVals, numElementsImage, numElementsImage);


end

利用MATLAB imfilter()对该程序进行了验证。

它不是经过优化的(不是以矢量化的方式编写的),因为我编写它是为了让人们能够轻松地掌握正在发生的事情。

完整的代码可以在我的StackOverflow Q2080835 GitHub库房中获得。

票数 0
EN
页面原文内容由Stack Overflow提供。腾讯云小微IT领域专用引擎提供翻译支持
原文链接:

https://stackoverflow.com/questions/26151265

复制
相关文章

相似问题

领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档