我在跟踪本指南而没有改变任何东西。我正在使用aws服务器和深度学习ami:深度学习AMI (Ubuntu18.04)版本40.0
我尝试将我的自定义数据集更改为coco数据集,并将其更改为自定义数据集的一个小子集。批量大小似乎并不重要,数据自动化系统和其他驱动程序似乎有效。
当批处理启动培训过程时,会引发异常。这是完整的堆栈跟踪:
Logging results to runs/train/exp66
Starting training for 5 epochs...
Epoch gpu_mem box obj cls total targets img_size
0%| | 0/22 [00:00<?, ?it/s]
Traceback (most recent call last):
File "train.py", line 533, in <module>
train(hyp, opt, device, tb_writer, wandb)
File "train.py", line 298, in train
pred = model(imgs) # forward
File "/usr/local/lib/python3.8/site-packages/torch/nn/modules/module.py", line 889, in _call_impl
result = self.forward(*input, **kwargs)
File "/home/ubuntu/yolov5/models/yolo.py", line 121, in forward
return self.forward_once(x, profile) # single-scale inference, train
File "/home/ubuntu/yolov5/models/yolo.py", line 137, in forward_once
x = m(x) # run
File "/usr/local/lib/python3.8/site-packages/torch/nn/modules/module.py", line 889, in _call_impl
result = self.forward(*input, **kwargs)
File "/home/ubuntu/yolov5/models/common.py", line 113, in forward
return self.conv(torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1))
File "/usr/local/lib/python3.8/site-packages/torch/nn/modules/module.py", line 889, in _call_impl
result = self.forward(*input, **kwargs)
File "/home/ubuntu/yolov5/models/common.py", line 38, in forward
return self.act(self.bn(self.conv(x)))
File "/usr/local/lib/python3.8/site-packages/torch/nn/modules/module.py", line 889, in _call_impl
result = self.forward(*input, **kwargs)
File "/usr/local/lib/python3.8/site-packages/torch/nn/modules/conv.py", line 399, in forward
return self._conv_forward(input, self.weight, self.bias)
File "/usr/local/lib/python3.8/site-packages/torch/nn/modules/conv.py", line 395, in _conv_forward
return F.conv2d(input, weight, bias, self.stride,
RuntimeError: cuDNN error: CUDNN_STATUS_NOT_INITIALIZED
发布于 2021-03-08 12:29:05
我用conda对它进行了修复,我克隆了与图像一起出现的pytorch环境,它工作得很完美。但我还是不知道原因。
发布于 2021-03-18 08:24:40
我不知道为什么,但似乎火炬1.8是建立在旧版本的库达。同样,由于Py手电筒有自己的cuda,它似乎不关心您的机器上有什么版本。改变火炬版本(并匹配兼容的视觉)解决了我的问题。
就我而言,我所做的如下:
torch==1.7.1
torchvision==0.8.2
$ pip安装-r requirements.txt
希望能对某人有所帮助:)
发布于 2021-06-21 06:03:51
当我尝试在脚本中训练yolov5时,我遇到了类似的情况。我发现升级到torch==1.9.0和torchvision==0.10.0也有效(如果您不想像上面提到的那样降级)
https://stackoverflow.com/questions/66528261
复制相似问题