首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >问答首页 >相空间重构构建数据分布+bp神经网络算法训练函数F和遗传算法进行特征选取?

相空间重构构建数据分布+bp神经网络算法训练函数F和遗传算法进行特征选取?

提问于 2022-09-15 08:03:18
回答 0关注 0查看 138

文中提到的:“相空间重构对气象数据、通信、经济学等领域非常有用武之地,笔者曾经在一个研究气象污染物系统预报的实习项目中就用到了该方法,当时采用的是相空间重构构建数据分布+bp神经网络算法训练函数F和遗传算法进行特征选取的技术方案,最后使得预测误差较小,得到了当时公司技术大牛的认可,所以在有混沌序列的应用场景,条件反射地想到重构相空间不失为一个非常好的数据处理思路!”

您是否有可供阅读参考的资料关于您所提到的 相空间重构构建数据分布+bp神经网络算法训练函数F和遗传算法进行特征选取

回答

成为首答用户。去 写回答
相关文章
时间序列算法(二)——相空间重构理论
在时间序列问题的一般场景中,都是通过在时间域或者时域与频域的变换中进行研究的,而有一类时间序列本身是在确定系统中出现的无规则的运动极具混沌特性的时间序列(混沌的含义是混乱而没有秩序的状态),这个混沌现象是广泛存在的,因为很多后续变化都是对初值敏感,而且虽然整个过程中表面无规则但是实际上是可以通过一些动力学模型预测的。对于这一类混沌时间序列的问题(包括模型建立和预测)在现存的理论中是在相空间进行研究的,所以自然而然相空间重构是处理混沌时间序列中非常重要的过程
用户7506105
2021/09/27
7.8K0
遗传算法经典实例_遗传算法优化BP神经网络
下面用手工计算来简单地模拟遗传算法的各 个主要执行步骤。 例:求下述二元函数的最大值:
全栈程序员站长
2022/10/03
9971
遗传算法经典实例_遗传算法优化BP神经网络
遗传算法优化bp神经网络matlab代码_神经网络进化算法
最近在学遗传算法优化BP神经网络,从新浪博客,Matlab中文论坛以及《MATLAB 神经网络43个案例分析》里看了许多资料, 存在着缺少test函数,以及函数名调用错误等问题。自编了test函数,调整后,供大家参考,(在Matlab2006a亲测可行)。
全栈程序员站长
2022/10/01
1.2K0
智能优化算法回顾
mark一下,感谢作者分享。当年在毕设的时候研究智能优化算法,工作中偶尔也会写些demo,今天看到这篇文章,赶紧收藏。
全栈程序员站长
2022/08/31
8730
独家 | 一文读懂优化算法
一、前言 模拟退火、遗传算法、禁忌搜索、神经网络等在解决全局最优解的问题上有着独到的优点,其中共同特点就是模拟了自然过程。模拟退火思路源于物理学中固体物质的退火过程,遗传算法借鉴了自然界优胜劣汰的进化思想,禁忌搜索模拟了人类有记忆过程的智力过程,神经网络更是直接模拟了人脑。它们之间的联系也非常紧密,比如模拟退火和遗传算法为神经网络提供更优良的学习算法提供了思路。把它们有机地综合在一起,取长补短,性能将更加优良。 这几种智能算法有别于一般的按照图灵机进行精确计算的程序,尤其是人工神经网络,是对计算机模
数据派THU
2018/01/30
3.7K0
独家 | 一文读懂优化算法
机器学习概念总结笔记(三)
作者:许敏 系列推荐 机器学习概念总结笔记(一) 机器学习概念总结笔记(二) 机器学习概念总结笔记(四) 12)分类决策树C4.5 C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进
serena
2017/09/30
1.9K0
机器学习概念总结笔记(三)
大数据||使用AI算法进行滚动轴承故障精准预测
故障诊断和预测的关键是实现从故障征兆到故障识别的映射。传统的方式是基于推理的专家系统,但专家系统用于故障诊断,存在知识获取困难,组合爆炸和匹配冲突等问题,学习应用达不到预期效果。
SHOUT
2022/05/31
1.8K0
大数据||使用AI算法进行滚动轴承故障精准预测
BP 神经网络算法
x的值可能为[−∞,+∞],为了方便处理,需要将其压缩到一个合理的范围,还需 这样的激励函数,能够将刚才的区间压缩到[0,1]。
一个会写诗的程序员
2018/08/17
7600
BP 神经网络算法
BP神经网络算法_bp神经网络算法流程图
1、前馈神经网络、反馈神经网络、BP网络等,他们之间的关系 前馈型神经网络: 取连续或离散变量,一般不考虑输出与输入在时间上的滞后效应,只表达输出与输入的映射关系;在此种神经网络中,各神经元从输入层开始,接收前一级输入,并输入到下一级,直至输出层。整个网络中无反馈,可用一个有向无环图表示。常见的前馈神经网络有感知机(Perceptrons)、BP(Back Propagation)网络、RBF(Radial Basis Function)网络等。 BP网络: BP网络是指连接权调整采用了反向传播(Back Propagation)学习算法的前馈网络。与感知器不同之处在于,BP网络的神经元变换函数采用了S形函数(Sigmoid函数),因此输出量是0~1之间的连续量,可实现从输入到输出的任意的非线性映射。 由上可知BP网络是通过BP算法来修正误差的前馈神经网络 反馈型神经网络: 取连续或离散变量,考虑输出与输入之间在时间上的延迟,需要用动态方程来描述系统的模型。
全栈程序员站长
2022/10/03
1.3K0
BP神经网络算法_bp神经网络算法流程图
2021华为杯数学建模B题完整思路+部分代码
问题 1. 使用附件 1 中的数据,按照附录中的方法计算监测点 A 从 2020 年 8 月 25 日到 8 月 28 日每天实测的 AQI 和首要污染物,将结果按照附录“AQI 计算结 果表”的格式放在正文中。 问题一就是单纯的计算问题,在附录中相关的计算规则都已经告知了,因此直接 带入数据进行计算即可,但需要注意各种逻辑关系,先捋顺在去计算。注意如果 计算结果过长就只选择部分代表性数据放在正文中即可,其它的部分放在附录 里。 问题 2. 在污染物排放情况不变的条件下,某一地区的气象条件有利于污染物扩 散或沉降时,该地区的 AQI 会下降,反之会上升。使用附件 1 中的数据,根据 对污染物浓度的影响程度,对气象条件进行合理分类,并阐述各类气象条件的特 征。 针对问题二,根据附件一可知,仅告诉我们检测点 A 的各类实测污染物数据, 但并未告知气象情况,因此我们首先根据问题一计算得到的 AQI 数据以及相关 的污染物数据进行无监督聚类,无监督聚类模型有很多,如层次聚类、高斯混合 聚类等,在这里比较推荐 SOM 自组织神经网络聚类算法,将原始数据输入网络 后能够自动根据各类数据的特点在不同的步数下生成不同的结果,如将 31 个省 市的 GDP 数据输入网络则会自动对发达程度进行聚类; % 二维自组织特征映射网络设计 % 输入数据为各类实测污染物数据 clc clear close all %--------------------------------------------------- %随机生成 100 个二维向量,作为样本,并绘制出其分布 P=[此处填写污染物数据] % %建立网络,得到初始权值 net=newsom([0 1;0 1],[5 6]); w1_init=net.iw{1,1}; %--------------------------------------------------- %绘制出初始权值分布图 figure(2); plotsom(w1_init,net.layers{1}.distances) %--------------------------------------------------- %分别对不同的步长,训练网络,绘制出相应的权值分布图 for i=10:30:100 net.trainParam.epochs=i; net=train(net,P); figure(3); plotsom(net.iw{1,1},net.layers{1}.distances) end %--------------------------------------------------- 问题 3. 使用附件 1、2 中的数据,建立一个同时适用于 A、B、C 三个监测点(监 测点两两间直线距离>100km,忽略相互影响)的二次预报数学模型,用来预测 未来三天 6 种常规污染物单日浓度值,要求二次预报模型预测结果中 AQI 预报 值的最大相对误差应尽量小,且首要污染物预测准确度尽量高。并使用该模型预 测监测点 A、B、C 在 2021 年 7 月 13 日至 7 月 15 日 6 种常规污染物的单日浓度 值,计算相应的 AQI 和首要污染物,将结果依照附录“污染物浓度及 AQI 预测 结果表”的格式放在论文中。 首先分析题目已知数据包括了各监测点逐小时污染物浓度和气象一次预报数据 以及实测的污染物浓度和气象数据等;这里就是利用实测数据对预报数据进行误 差修正,既然是预测,那实测数据在未来肯定是无法得到的,所以思路就是通过 前期的预测数据和实测数据的差,找到相关的误差修正规律即可;因此在这里推 荐的模型是神经网络模型,具体是设置一个三层的网络机构,输入层数据是一次 预报的气象条件,而标准输出数据为真实污染物浓度与预测污染物浓度的差值, 这样就建立了预测气象条件与实际污染物浓度误差之间的关系;在这里推荐使用 基于遗传算法优化的神经网络模型,相对于传统的 BP 神经网络而言,其精度将 会更高。得到上述网络关系后,若新得到一组一次预报气象数据结合相关的误差 变量进行二次修正即可。 %程序一:GA 训练 BP 权值的主函数 function net=GABPNET(XX,YY) %-------------------------------------------------------------------------- % GABPNET.m % 使用遗传算法对 BP 网络权值阈值进行优化,再用 BP 算法训练网络 %--------------------------------------------------------------------------
川川菜鸟
2021/10/19
1.9K0
量化投资之机器学习应用——基于 SVM 模型的商品期货择时交易策略(提出质疑和讨论)
2016年在东证期货的量化报告里,读到一篇文章,关于量化投资策略之机器学习应用——基于 SVM 模型的期货择时交易策略 。就顺手算了一下,发现了一些问题,因此和大家来讨论。 (文章比较长,因为有编辑部成员思考实践的部分,我们支持大胆提出质疑的精神!请在留言处发表你的看法和观点。) 机器学习简述 根据 Tom Michael Mitchell对机器学习的定义,假设有任务 T、执行结果衡量标准P 以及从中获取的经验值E,计算机程序在反复执行相关任务(T)后的成绩(P)会随着经验(E)的积累而不断提高和
量化投资与机器学习微信公众号
2018/01/29
4.4K0
量化投资之机器学习应用——基于 SVM 模型的商品期货择时交易策略(提出质疑和讨论)
数学建模学习笔记(十四)神经网络——下:BP实战-非线性函数拟合
看到有人整理了BP神经网络matlab代码实现 特此放上链接:BP神经网络matlab代码实现步骤 另外为了对数据进行尝试,看了下《MATLAB神经网络43个案例分析》的案例,懵懵懂懂,先将第二章非线性函数拟合的代码放置如下:
zstar
2022/06/14
9640
分类问题 数据挖掘之分类模型
判别分析是在已知研究对象分成若干类型并已经取得各种类型的一批已知样本的观测数据,在此基础上根据某些准则建立判别式,然后对未知类型的样品进行判别分析。
用户2909867
2018/08/22
1.2K0
分类问题
数据挖掘之分类模型
BP神经网络基础算法
BP算法是一种有监督式的学习算法,其主要思想是:输入学习样本,使用反向传播算法对网络的权值和偏差进行反复的调整训练,使输出的向量与期望向量尽可能地接近,当网络输出层的误差平方和小于指定的误差时训练完成,保存网络的权值和偏差。具体步骤如下: (1)初始化,随机给定各连接权[w],[v]及阀值θi,rt。 (2)由给定的输入输出模式对计算隐层、输出层各单元输出 bj=f(■wijai-θj) ct=f(■vjtbj-rt) 式中:bj为隐层第j个神经元实际输出;ct为输出层第t个神经元的实际输出;wij为输入层
用户2235302
2018/06/13
1.5K0
BP神经网络算法改进文献_bp神经网络算法流程图
1.方法设计 传统的BP算法改进主要有两类: – 启发式算法:如附加动量法,自适应算法 – 数值优化法:如共轭梯度法、牛顿迭代法、Levenberg-Marquardt算法
全栈程序员站长
2022/10/01
8380
BP神经网络算法改进文献_bp神经网络算法流程图
BP神经网络基础算法
BP算法是一种有监督式的学习算法,其主要思想是:输入学习样本,使用反向传播算法对网络的权值和偏差进行反复的调整训练,使输出的向量与期望向量尽可能地接近,当网络输出层的误差平方和小于指定的误差时训练完成,保存网络的权值和偏差。具体步骤如下: (1)初始化,随机给定各连接权[w],[v]及阀值θi,rt。 (2)由给定的输入输出模式对计算隐层、输出层各单元输出 bj=f(■wijai-θj) ct=f(■vjtbj-rt) 式中:bj为隐层第j个神经元实际输出;ct为输出层第t个神经元的实际输出;wij为输入层
码农笔录
2018/06/29
1K0
BP神经网络基础算法
BP算法是一种有监督式的学习算法,其主要思想是:输入学习样本,使用反向传播算法对网络的权值和偏差进行反复的调整训练,使输出的向量与期望向量尽可能地接近,当网络输出层的误差平方和小于指定的误差时训练完成,保存网络的权值和偏差。具体步骤如下:
全栈程序员站长
2022/06/29
8550
BP神经网络基础算法
​大牛的《深度学习》笔记,60分钟带你学完Deep Learning(下)
导读:昨天我们为大家带来了大牛Zouxy学习深度学习的笔记的上篇。今天我们继续为大家带来教程的下篇,让我们看看这位大牛在深度学习领域还有什么独到的理解~ |六、浅层学习(Shallow Learning)和深度学习(Deep Learning) 浅层学习是机器学习的第一次浪潮。 20世纪80年代末期,用于人工神经网络的反向传播算法(也叫Back Propagation算法或者BP算法)的发明,给机器学习带来了希望,掀起了基于统计模型的机器学习热潮。这个热潮一直持续到今天。人们发现,利用BP算法可以让一个人工
AI科技评论
2018/03/07
1.3K0
​大牛的《深度学习》笔记,60分钟带你学完Deep Learning(下)
深度学习知识分享
六、浅层学习(Shallow Learning)和深度学习(Deep Learning)
商业新知
2019/03/22
1.1K0
深度学习知识分享
BP神经网络的Matlab实现——人工智能算法
这几天在各大媒体上接触到了人工智能机器学习,觉得很有意思,于是开始入门最简单的机器算法——神经网络训练算法(Neural Network Training);以前一直觉得机器学习很高深,到处是超高等数学、线性代数、数理统计。入坑发现确实是这样!但是呢由项目实例驱动的学习比起为考试不挂科为目的的学习更为高效、实用!在遗传算法、神经网络算法的学习入门之后觉得数学只要用心看没问题的(即使是蒙特卡洛和马尔科夫问题),但是呢需要把数学统计应用到程序中,来解决实际的问题这是两码事。主要呢还是需要动手打代码。下面呢是今天的机器学习之神经网络学习入门记录篇,希望帮助到同样入门采坑的哥们,一起进步!
全栈程序员站长
2022/06/29
1.7K0
BP神经网络的Matlab实现——人工智能算法

相似问题

遗传算法参数优化?

0102

怎样用matlab实现 二阶BP神经网络?二阶BP神经网络该怎么编程?

0300

训练神经网络中途被kill?

11.7K

如何用遗传算法解决设施规划问题?

0194

优化神经网络训练方法有哪些?

1132
交个朋友
加入腾讯云官网粉丝站
蹲全网底价单品 享第一手活动信息
相关问答用户
中建数科 | 技术总监架构部总经理擅长3个领域
公司公司公司公司公司公司 | 职务职务职务职务职务职务擅长3个领域
腾讯云TDP | 高级后端开发工程师擅长3个领域
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档