接上节继续,到目前为止,我们都是使用的ChatModel、ChatMessage、ChatMemory这类相对低层的low level API来实现各种功能。除了这些,langchain4j还提供了更高抽象级别的AIService,可以极大简化代码。
一、基本用法
1.1 定义业务接口
1 /**
2 * @author junmingyang
3 */
4 public interface ChineseTeacher {
5
6 @SystemMessage("你是一名小学语文老师")
7 @UserMessage("请用中文回答我的问题:{{it}}")
8 String chat(String query);
9
10 // @SystemMessage("你是一名小学语文老师")
11 // @UserMessage("请用中文回答我的问题:{{query}}")
12 // String chat(String query);
13
14 // @SystemMessage("你是一名小学语文老师")
15 // @UserMessage("请用中文回答我的问题:{{abc}}")
16 // String chat(@V("abc") String query);
17 }注:{{it}}是langchain4j内部约定的默认占位符名。当只有1个参数时,{{it}}在运行时,会自动替换成用户的prompt. 当然也可以强制指定参数名,就本示例而言,注释的二种写法,完全等效。
1.2 使用AiServices创建实例
1 /**
2 * 演示AIService基本用法
3 * by 菩提树下的杨过(yjmyzz.cnblogs.com)
4 * @param query
5 * @return
6 */
7 @GetMapping(value = "/aiservice/1", produces = MediaType.APPLICATION_JSON_VALUE)
8 public ResponseEntity<String> demo1(@RequestParam(defaultValue = "请问李清照最广为流传的词是哪一首,请给出这首词全文?") String query) {
9 try {
10 ChineseTeacher teacher = AiServices.builder(ChineseTeacher.class)
11 .chatModel(ollamaChatModel)
12 .chatMemory(MessageWindowChatMemory.withMaxMessages(10))
13 .build();
14 return ResponseEntity.ok(teacher.chat(query));
15 } catch (Exception e) {
16 return ResponseEntity.ok("{\"error\":\"chatChain error: " + e.getMessage() + "\"}");
17 }
18 }是不是很简单?运行效果:

二、结构化输出
AIService还可以将输出结果,以结构化输出(即:直接输出强类型的POJO对象),继续将上述示例改造一下:
2.1 定义POJO对象
1 /**
2 * @author junmingyang(菩提树下的杨过)
3 */
4 @Data
5 @AllArgsConstructor
6 @NoArgsConstructor
7 public class Poem {
8
9 @Description("标题")
10 private String title;
11
12 @Description("作者")
13 private String author;
14
15 @Description("内容")
16 private String content;
17 }2.2 定义1个extrator接口
1 /**
2 * @author junmingyang
3 */
4 public interface PoemExtractor {
5 @UserMessage("请从以下内容中提取出诗歌内容:{{query}}")
6 Poem extract(@V("query") String query);
7 }2.3 使用示例
1 /**
2 * 演示AIService基本用法+结构化返回
3 *
4 * @param query
5 * @return
6 */
7 @GetMapping(value = "/aiservice/2", produces = MediaType.APPLICATION_JSON_VALUE)
8 public ResponseEntity<Poem> demo2(@RequestParam(defaultValue = """
9 请问李清照最广为流传的词是哪一首,
10 请给出这首词全文(以json格式输出,类似{\"author\":\"...\",\"title\":\"...\",\"content\":\"...\"})?""") String query) {
11 try {
12 Poem extract = AiServices.builder(PoemExtractor.class)
13 .chatModel(ollamaChatModel).build()
14 .extract(AiServices.builder(ChineseTeacher.class)
15 .chatModel(ollamaChatModel)
16 .chatMemory(MessageWindowChatMemory.withMaxMessages(10))
17 .build().chat(query));
18 return ResponseEntity.ok(extract);
19 } catch (Exception e) {
20 return ResponseEntity.ok(new Poem("error", "error", e.getMessage()));
21 }
22 }运行效果:


三、流式响应
1 /**
2 * 演示AIService基本用法+流式返回
3 *
4 * @param query
5 * @return
6 */
7 @GetMapping(value = "/aiservice/3", produces = "text/html;charset=utf-8")
8 public Flux<String> demo3(@RequestParam(defaultValue = "请问李清照最广为流传的词是哪一首,请给出这首词全文?") String query) {
9 ChineseStreamTeacher teacher = AiServices.builder(ChineseStreamTeacher.class)
10 .streamingChatModel(streamingChatModel)
11 .build();
12
13 Sinks.Many<String> sink = Sinks.many().unicast().onBackpressureBuffer();
14 teacher.chat(query)
15 .onPartialResponse((String s) -> sink.tryEmitNext(escapeToHtml(s)))
16 .onCompleteResponse((ChatResponse response) -> sink.tryEmitComplete())
17 .onError(sink::tryEmitError)
18 .start();
19 return sink.asFlux();
20 }
四、可观测性(trace跟踪)
LLM应用中,trace跟踪是很重要,比如:每次请求消耗了多少token,哪个环节耗时最大,每次请求LLM的输入/输出是什么...
4.1 model级别的监听器
1 /**
2 * 自定义ChatModelListener(监听器)
3 */
4 public class CustomChatModelListener implements ChatModelListener {
5 @Override
6 public void onRequest(ChatModelRequestContext requestContext) {
7 ChatRequest chatRequest = requestContext.chatRequest();
8
9 List<ChatMessage> messages = chatRequest.messages();
10 System.out.println(messages);
11
12 ChatRequestParameters parameters = chatRequest.parameters();
13 System.out.println(parameters);
14
15 System.out.println(requestContext.modelProvider());
16
17 Map<Object, Object> attributes = requestContext.attributes();
18 attributes.put("my-attribute", "my-value");
19 }
20
21 @Override
22 public void onResponse(ChatModelResponseContext responseContext) {
23 ChatResponse chatResponse = responseContext.chatResponse();
24
25 AiMessage aiMessage = chatResponse.aiMessage();
26 System.out.println(aiMessage);
27
28 ChatResponseMetadata metadata = chatResponse.metadata();
29 System.out.println(metadata);
30
31 TokenUsage tokenUsage = metadata.tokenUsage();
32 System.out.println(tokenUsage);
33
34 ChatRequest chatRequest = responseContext.chatRequest();
35 System.out.println(chatRequest);
36
37 System.out.println(responseContext.modelProvider());
38
39 Map<Object, Object> attributes = responseContext.attributes();
40 System.out.println(attributes.get("my-attribute"));
41 }
42
43 @Override
44 public void onError(ChatModelErrorContext errorContext) {
45 Throwable error = errorContext.error();
46 error.printStackTrace();
47
48 ChatRequest chatRequest = errorContext.chatRequest();
49 System.out.println(chatRequest);
50
51 System.out.println(errorContext.modelProvider());
52
53 Map<Object, Object> attributes = errorContext.attributes();
54 System.out.println(attributes.get("my-attribute"));
55 }
56 }自定义1个listener,可以把LLM的输入、输出、错误信息都拿到,按实际业务需求做相应处理(比如:记日志,或存储便于离线分析),在注入model时,加上这个监听器
1 @Bean("ollamaChatModel")
2 public ChatModel chatModel() {
3 return OllamaChatModel.builder()
4 .baseUrl(ollamaBaseUrl)
5 .modelName(ollamaModel)
6 .timeout(Duration.ofSeconds(timeoutSeconds))
7 .logRequests(true)
8 .logResponses(true)
9 //加入监听器
10 .listeners(List.of(new CustomChatModelListener()))
11 .build();
12 }4.2 AiService监听器

langchain4j内置这几种AiService的监听器,这里我们挑2个做为示例
1 /**
2 * @author junmingyang
3 */
4 public class CustomAiServiceStartedListener implements AiServiceStartedListener {
5
6 @Override
7 public void onEvent(AiServiceStartedEvent event) {
8 InvocationContext invocationContext = event.invocationContext();
9 Optional<SystemMessage> systemMessage = event.systemMessage();
10 UserMessage userMessage = event.userMessage();
11
12 // 所有与同一LLM调用相关的事件,invocationId将保持一致
13 UUID invocationId = invocationContext.invocationId();
14 String aiServiceInterfaceName = invocationContext.interfaceName();
15 String aiServiceMethodName = invocationContext.methodName();
16 List<Object> aiServiceMethodArgs = invocationContext.methodArguments();
17 Object chatMemoryId = invocationContext.chatMemoryId();
18 Instant eventTimestamp = invocationContext.timestamp();
19
20 System.out.println("AiServiceStartedEvent: " +
21 "invocationId=" + invocationId +
22 ", aiServiceInterfaceName=" + aiServiceInterfaceName +
23 ", aiServiceMethodName=" + aiServiceMethodName +
24 ", aiServiceMethodArgs=" + aiServiceMethodArgs +
25 ", chatMemoryId=" + chatMemoryId +
26 ", eventTimestamp=" + eventTimestamp +
27 ", userMessage=" + userMessage +
28 ", systemMessage=" + systemMessage);
29 }
30
31
32 } 1 public class CustomAiServiceCompletedListener implements AiServiceCompletedListener {
2 @Override
3 public void onEvent(AiServiceCompletedEvent event) {
4 InvocationContext invocationContext = event.invocationContext();
5 Optional<Object> result = event.result();
6
7 UUID invocationId = invocationContext.invocationId();
8 String aiServiceInterfaceName = invocationContext.interfaceName();
9 String aiServiceMethodName = invocationContext.methodName();
10 List<Object> aiServiceMethodArgs = invocationContext.methodArguments();
11 Object chatMemoryId = invocationContext.chatMemoryId();
12 Instant eventTimestamp = invocationContext.timestamp();
13
14 System.out.println("AiServiceCompletedListener: " +
15 "invocationId=" + invocationId +
16 ", aiServiceInterfaceName=" + aiServiceInterfaceName +
17 ", aiServiceMethodName=" + aiServiceMethodName +
18 ", aiServiceMethodArgs=" + aiServiceMethodArgs +
19 ", chatMemoryId=" + chatMemoryId +
20 ", eventTimestamp=" + eventTimestamp +
21 ", result=" + result);
22 }
23 }顾名思义,1个是start(开始)的监听器,1个是complete(完成)的监听器
1 /**
2 * 演示AIService基本用法+自定义监听器
3 *
4 * @param query
5 * @return
6 */
7 @GetMapping(value = "/aiservice/4", produces = MediaType.APPLICATION_JSON_VALUE)
8 public ResponseEntity<String> demo4(@RequestParam(defaultValue = "请问李清照最广为流传的词是哪一首,请给出这首词全文?") String query) {
9 try {
10 ChineseTeacher teacher = AiServices.builder(ChineseTeacher.class)
11 .chatModel(ollamaChatModel)
12 .chatMemory(MessageWindowChatMemory.withMaxMessages(10))
13 //加入监听器
14 .registerListeners(List.of(new CustomAiServiceStartedListener(), new CustomAiServiceCompletedListener()))
15 .build();
16 return ResponseEntity.ok(teacher.chat(query));
17 } catch (Exception e) {
18 return ResponseEntity.ok("{\"error\":\"chatChain error: " + e.getMessage() + "\"}");
19 }
20 }加入以上listener后,我们来看看运行时的控制台输出
1 AiServiceStartedEvent: invocationId=6a0e5f23-6a30-4485-8ed3-49c9a0ac6d5a, aiServiceInterfaceName=com.cnblogs.yjmyzz.langchain4j.study.service.ChineseTeacher, aiServiceMethodName=chat, aiServiceMethodArgs=[请问李清照最广为流传的词是哪一首,请给出这首词全文?], chatMemoryId=default, eventTimestamp=2026-01-11T06:19:51.685233Z, userMessage=UserMessage { name = null, contents = [TextContent { text = "请用中文回答我的问题:请问李清照最广为流传的词是哪一首,请给出这首词全文?" }], attributes = {} }, systemMessage=Optional[SystemMessage { text = "你是一名小学语文老师" }]
2 [SystemMessage { text = "你是一名小学语文老师" }, UserMessage { name = null, contents = [TextContent { text = "请用中文回答我的问题:请问李清照最广为流传的词是哪一首,请给出这首词全文?" }], attributes = {} }]
3 OllamaChatRequestParameters{modelName="deepseek-v3.1:671b-cloud", temperature=null, topP=null, topK=null, frequencyPenalty=null, presencePenalty=null, maxOutputTokens=null, stopSequences=[], toolSpecifications=[], toolChoice=null, responseFormat=null, mirostat=null, mirostatEta=null, mirostatTau=null, numCtx=null, repeatLastN=null, repeatPenalty=null, seed=null, minP=null, keepAlive=null, think=null}
4 OLLAMA
5 2026-01-11T14:19:51.860+08:00 INFO 25716 --- [langchain4j-study] [nio-8080-exec-1] d.l.http.client.log.LoggingHttpClient : HTTP request:
6 - method: POST
7 - url: http://localhost:11434/api/chat
8 - headers: [Content-Type: application/json]
9 - body: {
10 "model" : "deepseek-v3.1:671b-cloud",
11 "messages" : [ {
12 "role" : "system",
13 "content" : "你是一名小学语文老师"
14 }, {
15 "role" : "user",
16 "content" : "请用中文回答我的问题:请问李清照最广为流传的词是哪一首,请给出这首词全文?"
17 } ],
18 "options" : {
19 "stop" : [ ]
20 },
21 "stream" : false,
22 "tools" : [ ]
23 }
24
25 2026-01-11T14:19:54.570+08:00 INFO 25716 --- [langchain4j-study] [nio-8080-exec-1] d.l.http.client.log.LoggingHttpClient : HTTP response:
26 - status code: 200
27 - headers: [content-type: application/json; charset=utf-8], [date: Sun, 11 Jan 2026 06:19:54 GMT], [transfer-encoding: chunked]
28 - body: {"model":"deepseek-v3.1:671b-cloud","remote_model":"deepseek-v3.1:671b","remote_host":"https://ollama.com:443","created_at":"2026-01-11T06:19:54.384141206Z","message":{"role":"assistant","content":"李清照最广为传诵的词作之一是《声声慢·寻寻觅觅》,这首词以深婉哀怨的笔触抒发了国破家亡、颠沛流离的愁绪。全文如下:\n\n**《声声慢·寻寻觅觅》** \n寻寻觅觅,冷冷清清,凄凄惨惨戚戚。 \n乍暖还寒时候,最难将息。 \n三杯两盏淡酒,怎敌他、晚来风急? \n雁过也,正伤心,却是旧时相识。 \n\n满地黄花堆积。憔悴损,如今有谁堪摘? \n守着窗儿,独自怎生得黑? \n梧桐更兼细雨,到黄昏、点点滴滴。 \n这次第,怎一个愁字了得!\n\n---\n\n**注释**: \n1. 词中叠字开篇“寻寻觅觅,冷冷清清,凄凄惨惨戚戚”,通过音律重叠强化了孤寂无依的意境; \n2. “雁过也”借秋雁南飞暗喻往事不可追的哀痛; \n3. 结尾“怎一个愁字了得”以反问收束,将愁绪推向极致,余韵绵长。\n\n这首词因语言精炼、情感深切,成为宋婉约词的典范之作。"},"done":true,"done_reason":"stop","total_duration":2242392515,"prompt_eval_count":33,"eval_count":272}
29
30
31 AiMessage { text = "李清照最广为传诵的词作之一是《声声慢·寻寻觅觅》,这首词以深婉哀怨的笔触抒发了国破家亡、颠沛流离的愁绪。全文如下:
32
33 **《声声慢·寻寻觅觅》**
34 寻寻觅觅,冷冷清清,凄凄惨惨戚戚。
35 乍暖还寒时候,最难将息。
36 三杯两盏淡酒,怎敌他、晚来风急?
37 雁过也,正伤心,却是旧时相识。
38
39 满地黄花堆积。憔悴损,如今有谁堪摘?
40 守着窗儿,独自怎生得黑?
41 梧桐更兼细雨,到黄昏、点点滴滴。
42 这次第,怎一个愁字了得!
43
44 ---
45
46 **注释**:
47 1. 词中叠字开篇“寻寻觅觅,冷冷清清,凄凄惨惨戚戚”,通过音律重叠强化了孤寂无依的意境;
48 2. “雁过也”借秋雁南飞暗喻往事不可追的哀痛;
49 3. 结尾“怎一个愁字了得”以反问收束,将愁绪推向极致,余韵绵长。
50
51 这首词因语言精炼、情感深切,成为宋婉约词的典范之作。", thinking = null, toolExecutionRequests = [], attributes = {} }
52 ChatResponseMetadata{id='null', modelName='deepseek-v3.1:671b-cloud', tokenUsage=TokenUsage { inputTokenCount = 33, outputTokenCount = 272, totalTokenCount = 305 }, finishReason=STOP}
53 TokenUsage { inputTokenCount = 33, outputTokenCount = 272, totalTokenCount = 305 }
54 ChatRequest { messages = [SystemMessage { text = "你是一名小学语文老师" }, UserMessage { name = null, contents = [TextContent { text = "请用中文回答我的问题:请问李清照最广为流传的词是哪一首,请给出这首词全文?" }], attributes = {} }], parameters = OllamaChatRequestParameters{modelName="deepseek-v3.1:671b-cloud", temperature=null, topP=null, topK=null, frequencyPenalty=null, presencePenalty=null, maxOutputTokens=null, stopSequences=[], toolSpecifications=[], toolChoice=null, responseFormat=null, mirostat=null, mirostatEta=null, mirostatTau=null, numCtx=null, repeatLastN=null, repeatPenalty=null, seed=null, minP=null, keepAlive=null, think=null} }
55 OLLAMA
56 my-value
57 AiServiceCompletedListener: invocationId=6a0e5f23-6a30-4485-8ed3-49c9a0ac6d5a, aiServiceInterfaceName=com.cnblogs.yjmyzz.langchain4j.study.service.ChineseTeacher, aiServiceMethodName=chat, aiServiceMethodArgs=[请问李清照最广为流传的词是哪一首,请给出这首词全文?], chatMemoryId=default, eventTimestamp=2026-01-11T06:19:51.685233Z, result=Optional[李清照最广为传诵的词作之一是《声声慢·寻寻觅觅》,这首词以深婉哀怨的笔触抒发了国破家亡、颠沛流离的愁绪。全文如下:
58
59 **《声声慢·寻寻觅觅》**
60 寻寻觅觅,冷冷清清,凄凄惨惨戚戚。
61 乍暖还寒时候,最难将息。
62 三杯两盏淡酒,怎敌他、晚来风急?
63 雁过也,正伤心,却是旧时相识。
64
65 满地黄花堆积。憔悴损,如今有谁堪摘?
66 守着窗儿,独自怎生得黑?
67 梧桐更兼细雨,到黄昏、点点滴滴。
68 这次第,怎一个愁字了得!
69
70 ---
71
72 **注释**:
73 1. 词中叠字开篇“寻寻觅觅,冷冷清清,凄凄惨惨戚戚”,通过音律重叠强化了孤寂无依的意境;
74 2. “雁过也”借秋雁南飞暗喻往事不可追的哀痛;
75 3. 结尾“怎一个愁字了得”以反问收束,将愁绪推向极致,余韵绵长。
76
77 这首词因语言精炼、情感深切,成为宋婉约词的典范之作。]其中:
行1 - 是CustomAiServiceStartedListener的输出
行57 - 是CustomAiServiceCompletedListener的输出
行31,54,56等是CustomChatModelListener的输出,其中要注意的是:
CustomChatModelListener.onRequest中, 上下文中示例放了1个自定义属性 my-attribute -> my-value

然后在onResponse中, 在输出结果中,尝试获取这个属性

从56行的日志来看, 拿到了这个附加的自定义属性,这个特性很有用,可以在整个上下文中埋入一些业务trace key,用于串连业务上下文。
文中代码:
https://github.com/yjmyzz/langchain4j-study/tree/day09
参考: