关于单细胞的UMAP图,前面我们介绍了这么多啦:
Fig2中的a图:是一幅非常常见的单细胞UMAP散点图,展示了细胞类型注释结果。图用了左下角的小箭头坐标,图例使用的 带外圈的小圆点并经过了精细调整。

图注:
Fig. 2: Cellular neighborhood structures and unique spatial niches in B cell lymphoma. a, High-resolution cell state identification in the CosMx SMI dataset.
作者利用78例大B细胞淋巴瘤切除活检样本及5例对照组织(4例扁桃体、1例淋巴结)构建了六组组织微阵列。大B细胞淋巴瘤样本包括:
每个组织微阵列均采用 NanoString CosMx 平台进行单细胞空间转录组学分析,并采用包含31种抗体的CODEX多重检测技术进行空间蛋白质组学分析(图1a):

基于CosMx数据的高分辨率聚类分析共鉴定出19种细胞类型与状态(图2a):
作者抽取了部分示例数据以及代码放在github上面:
https://github.com/Coolgenome/Lymphoma-spatial
先读取数据:
### Figure 2 ###
rm(list=ls())
### load essential packages ###
library(Seurat)
library(tidyverse)
library(dplyr)
library(ggplot2)
library(SCP)
# 极速安装
# install.packages("tidydr")
library(tidydr)
### Data reading in, preprocessing, cleaning, and cell type and state identification are described in the separate script Preprocessing.r
### Here for demonstrating the workflow, we directly provide the demo data, including count matrix and metadata. The processing of demo data is described in Figure 1.r
### load data object ###
Lymphoma_data <- readRDS("./demo_data/Lymphoma_data.rds") ### This is saved from the step of Figure 1b.
Lymphoma_data
head(Lymphoma_data@meta.data)
table(Lymphoma_data$orig.ident)
table(Lymphoma_data$Slide)
table(Lymphoma_data$FOV)
table(Lymphoma_data$sample_ID)
table(Lymphoma_data$major_lineage)
table(Lymphoma_data$cell_state)
对数据进行了简单探索,详细的细胞注释结果在 cell_state 里面。
先来绘制一个基础的umap图:
# 设置颜色
### Figure 2a ###
### UMAP for cell states ###
color <- c("#96F148","#ff7f00","#e5f5f9","#bebada","#df65b0","#D10000","#0000FF","#fff7fb","#fccde5",
"#bc80bd","#d9d9d9","#ffed6f","#d6604d","#02818a","#ccecb5","#80b1d3","#fb9a99","#006837",
"#6a3d9a")
p <- ggplot(Lymphoma_data@meta.data, aes(x=UMAP1, y=UMAP2, color=cell_state)) +
geom_point(size=0.1, alpha=0.3,shape = 21, stroke = 0.9) +
scale_color_manual(values=color)
p
结果如下:

接着修改一下图片的图例:
p <- ggplot(Lymphoma_data@meta.data, aes(x=UMAP1, y=UMAP2, color=cell_state)) +
geom_point(size=0.1, alpha=0.3,shape = 21, stroke = 0.9) +
scale_color_manual(values=color) +
guides( color = guide_legend( title = "", override.aes = list( fill=color,color = "black",stroke = 0.3, size = 4, alpha = 1), ncol = 2 ))
p

最后,使用来自 tidydr包的 theme_dr() 一键添加小箭头:
# 左下小箭头
p <- ggplot(Lymphoma_data@meta.data, aes(x=UMAP1, y=UMAP2, color=cell_state)) +
geom_point(size=0.1, alpha=0.3,shape = 21, stroke = 0.9) +
scale_color_manual(values=color) +
guides( color = guide_legend( title = "", override.aes = list( fill=color,color = "black",stroke = 0.3, size = 4, alpha = 1), ncol = 2 )) + # 图例中点的大小
theme_dr() + # 应用带小箭头的坐标轴主题(来自tidydr包)
theme( panel.grid = element_blank(),
legend.text = element_text( size = 12, face = "plain",color = "black")
) # 去除所有网格线
p
最终效果如下:

是不是非常棒!今天分享到这~
如果上面的内容对你有用,欢迎一键三连!
友情转发: