MATLAB的遗传算法解决车辆路径规划(VRP)问题
创新 使用0表示车辆路径分割点 如表示两辆车 根据车辆数动态调整染色体长度
%% 1. 数据准备(以20客户单仓库为例)
clear; clc;
num_customers = 20; % 客户数量
num_vehicles = 4; % 车辆数量
vehicle_capacity = 100; % 车辆容量
[coordinates, demands] = generate_vrp_data(num_customers); % 生成测试数据
%% 2. 遗传算法参数设置
options = optimoptions('ga',...
'PopulationSize', 100,...
'MaxGenerations', 500,...
'CrossoverFcn', @cxOrdered,...
'MutationFcn', @mutSwap,...
'SelectionFcn', @selectiontournament,...
'PlotFcn', {@gaplotbestf,@gaplotdistance});
%% 3. 染色体编码(基于仓库分隔符)
chromosome = ; % 示例染色体
%% 4. 适应度函数(含容量约束)
function fitness = calculateFitness(chromosome, coordinates, demands, vehicle_capacity)
num_vehicles = sum(chromosome == 0) - 1; % 车辆数=分隔符数-1
total_distance = 0;
valid = true;
% 路径分割
routes = strsplit(num2str(chromosome), '0');
for i = 1:numel(routes)
route = routes{i};
if isempty(route)
continue;
end
route = route(route ~= ' '); % 去除空格
route = str2num(route);
% 容量检查
load_sum = sum(demands(route));
if load_sum > vehicle_capacity
valid = false;
break;
end
% 距离计算
current_pos = ; % 仓库坐标
for j = 1:numel(route)
next_pos = coordinates(route(j),:);
total_distance = total_distance + norm(current_pos - next_pos);
current_pos = next_pos;
end
total_distance = total_distance + norm(current_pos, ); % 返回仓库
end
if valid
fitness = 1 / total_distance; % 适应度与距离成反比
else
fitness = 0; % 非法解适应度为0
end
end
%% 5. 遗传算法主循环
nvars = num_customers + 1; % 染色体长度(客户数+仓库分隔符)
lb = ; % 下限
ub = [num_customers,num_customers,num_customers](@ref); % 上限
% 运行遗传算法
[best_solution, best_fitness] = ga(@(x) calculateFitness(x, coordinates, demands, vehicle_capacity),...
nvars, [], [], [], [], lb, ub, [], options);
%% 6. 结果解析与可视化
best_chromosome = best_solution;
disp('最优路径:');
disp(best_chromosome);
% 绘制路径
figure;
hold on;
plot(coordinates(:,2), coordinates(:,3),'ko'); % 客户点
plot(coordinates(1,2), coordinates(1,3),'ro'); % 仓库
routes = strsplit(num2str(best_chromosome), '0');
for i = 1:numel(routes)
route = routes{i};
route = route(route ~= ' ');
route = str2num(route);
if isempty(route)
continue;
end
route_coords = coordinates(route,:);
plot(route_coords(:,2), route_coords(:,3),'b-');
end
hold off;
title(sprintf('最优路径(总距离=%.2f)', 1/best_fitness));% 容量约束检查函数
function valid = check_capacity(chromosome, demands, capacity)
index = find(chromosome == 0);
index = [0,index,length(chromosome)+1](@ref);
for i = 2:numel(index)
route = chromosome(index(i-1)+1:index(i)-1);
if sum(demands(route)) > capacity
valid = false;
return;
end
end
valid = true;
end
% 启用并行计算池
parpool('local');
% 并行适应度评估
fitness = gcp().JobManager.evaluate(@(x) calculateFitness(x, coordinates, demands, vehicle_capacity), population);% 2-opt局部优化
function improved = two_opt(route)
improved = route;
n = length(route);
for i = 1:n-2
for j = i+2:n
new_route = route;
new_route(i:j) = route(j:-1:i);
if calculateRouteDistance(new_route) < calculateRouteDistance(improved)
improved = new_route;
end
end
end
end% 保留前5%最优个体
elite_ratio = 0.05;
num_elites = round(elite_ratio * pop_size);
[~, idx] = mink(fitness, num_elites);
elite_population = population(idx,:);% 多仓库路径规划流程
function multi_depot_vrp()
% 仓库分配阶段
depot_assign = kmeans(customer_coords, num_depots);
% 车辆路径规划
for i = 1:num_depots
sub_customers = customers(depot_assign == i);
sub_route = ga_solve(sub_customers);
global_route = [global_route, sub_route, '0'];
end
end% 时间窗约束处理
function feasible = check_time_window(route, time_windows)
current_time = 0;
for i = 1:length(route)
customer = route(i);
ready_time = time_windows(customer,1);
due_time = time_windows(customer,2);
if current_time < ready_time
current_time = ready_time;
end
service_time = 10; % 假设服务时间10分钟
current_time = current_time + service_time;
if current_time > due_time
feasible = false;
return;
end
end
feasible = true;
end参考代码 运用matlab软件,利用遗传算法解决VRP问题 www.youwenfan.com/contentted/64921.html
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。