首页
学习
活动
专区
圈层
工具
发布
社区首页 >专栏 >单细胞Scillus可视化R包学习

单细胞Scillus可视化R包学习

原创
作者头像
凑齐六个字吧
发布2025-10-06 00:04:29
发布2025-10-06 00:04:29
1210
举报
文章被收录于专栏:分析工具分析工具
Scillus分析流程
1.导入
代码语言:javascript
复制
rm(list = ls())
library(Scillus)
library(Seurat)
library(ggplot2)
library(qs)
scRNA <- qread("sc_dataset.qs")

DimPlot(scRNA,label = T)
colnames(scRNA@meta.data)
2.UMAP图展示
代码语言:javascript
复制
plot_scdata(scRNA, 
            color_by = "celltype",
            split_by = NA,
            pal_setup = "Set1"
)
ggsave("celltype.pdf",width = 9,height = 7)


plot_scdata(scRNA, 
            color_by = "celltype",
            split_by = "hpv",
            pal_setup = "Set1" # Dark2,也可以自定义颜色
)
ggsave("celltype.pdf",width = 18,height = 7)
3.柱状图展示
代码语言:javascript
复制
#"group_count", "prop_fill", and "prop_multi". 三种模式
plot_stat(scRNA, 
          plot_type = "group_count", #"group_count", "prop_fill", and "prop_multi".
          group_by = "hpv",
          pal_setup = "Set2",
          plot_ratio = 1,
          text_size = 10,
          tilt_text = FALSE)

plot_stat(scRNA, 
          plot_type = "prop_fill", #"group_count", "prop_fill", and "prop_multi".
          group_by = "hpv",
          pal_setup = "Set2",
          plot_ratio = 1,
          text_size = 10,
          tilt_text = FALSE)

plot_stat(scRNA, 
          plot_type = "prop_multi", #"group_count", "prop_fill", and "prop_multi".
          group_by = "hpv",
          pal_setup = "Set2",
          plot_ratio = 1,
          text_size = 10,
          tilt_text = FALSE)
4.热图绘制
代码语言:javascript
复制
# 正式绘图
markers <- FindAllMarkers(scRNA, logfc.threshold = 0.1, min.pct = 0, only.pos = T)
plot_heatmap(dataset = scRNA, 
              markers = markers,
              sort_var = c("celltype","hpv"),
              anno_var = c("celltype","hpv"),
              anno_colors = list("Set2",
                                 c("tomato","#009CB8")
                                 ))


plot_heatmap(dataset = scRNA,
             n = 6,# 每个聚类要绘制的基因数量。若指定标记基因,则此参数将不会被使用。
             markers = markers,
             sort_var = c("celltype","hpv"),
             anno_var = c("celltype","hpv"),
             anno_colors = list("Set2",
                                 c("tomato","#009CB8")
                                 ),
             hm_limit = c(-1,0,1),
             hm_colors = c("purple","black","yellow"))
5.GO富集分析
代码语言:javascript
复制
# 默认提取前100个基因
# 采用的是FinderMarker后的差异基因
plot_cluster_go(markers, 
                cluster_name = "myeloid cells", 
                org = "human", # 物种
                ont = "CC") # Go分析的方法

# 全部细胞
plot_all_cluster_go(markers, org = "human", ont = "CC")
6.“测量”数据绘制
代码语言:javascript
复制
#在元数据中,这些测量指标被定义为连续变量,与基因表达值类似。函数 plot_measure() 和 plot_measure_dim()分别用于以箱线图或小提琴图,以及降维可视化的方式对这些变量进行汇总展示。参数 group_by、split_by 和 pal_setup 的使用方式与前述部分一致。
plot_measure(dataset = scRNA, 
             measures = c("KRT14","percent.mt"), 
             group_by = "seurat_clusters", 
             pal_setup = "Set2")
7.plot_measure_dim

好像暂时不能用了

代码语言:javascript
复制
plot_measure_dim(dataset = scRNA, 
                 measures = c("nFeature_RNA"))
                # split_by = "GSE_num")
8.GSEA分析
代码语言:javascript
复制
de <- find_diff_genes(dataset = scRNA, 
                      clusters = "fibroblasts",
                      comparison = c("hpv", 
                                     "HPV-","HPV+"),
                      logfc.threshold = 0, # threshold of 0 is used for GSEA
                      min.cells.group = 1)  # To include clusters with only 1 cell

gsea_res <- test_GSEA(de, 
                      pathway = pathways.hallmark)

plot_GSEA(gsea_res, p_cutoff = 0.1, 
          colors = c("#0570b0", "grey", "#d7301f"))
参考资料:

1.Scillus:https://scillus.netlify.app/

:若对内容有疑惑或者有发现明确错误的朋友,请联系后台。更多相关内容可关注公众号:生信方舟

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • Scillus分析流程
    • 1.导入
    • 2.UMAP图展示
    • 3.柱状图展示
    • 4.热图绘制
    • 5.GO富集分析
    • 6.“测量”数据绘制
    • 7.plot_measure_dim
    • 8.GSEA分析
  • 参考资料:
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档