首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >【LightOJ】1305 - Area of a Parallelogram(求平行四边形面积)

【LightOJ】1305 - Area of a Parallelogram(求平行四边形面积)

作者头像
FishWang
发布2025-08-27 11:40:41
发布2025-08-27 11:40:41
8800
代码可运行
举报
运行总次数:0
代码可运行

点击打开题目

1305 - Area of a Parallelogram

PDF (English)

Statistics

Forum

Time Limit: 1 second(s)

Memory Limit: 32 MB

A parallelogram is a quadrilateral with two pairs of parallel sides. See the picture below:

Fig: a parallelogram

Now you are given the co ordinates of A, B and C, you have to find the coordinates of D and the area of the parallelogram. The orientation of ABCD should be same as in the picture.

Input

Input starts with an integer T (≤ 1000), denoting the number of test cases.

Each case starts with a line containing six integers Ax, Ay, Bx, By, Cx, Cy where (Ax, Ay) denotes the coordinate of A, (Bx, By) denotes the coordinate of Band (Cx, Cy) denotes the coordinate of C. Value of any coordinate lies in the range [-1000, 1000]. And you can assume that A, B and C will not be collinear.

Output

For each case, print the case number and three integers where the first two should be the coordinate of D and the third one should be the area of the parallelogram.

Sample Input

Output for Sample Input

3 0 0 10 0 10 10 0 0 10 0 10 -20 -12 -10 21 21 1 40

Case 1: 0 10 100 Case 2: 0 -20 200 Case 3: -32 9 1247

分一下斜率不存在的情况。

代码如下:

代码语言:javascript
代码运行次数:0
运行
复制
#include <cstdio>
#include <cstring>
#include <cmath>
#include <queue>
#include <map>
#include <vector>
#include <stack>
#include <algorithm>
using namespace std;
#define INF 0x3f3f3f3f
#define CLR(a,b) memset(a,b,sizeof(a))
#define LL long long
#define PI acos(-1.0)
int main()
{
	int u;
	int Case = 1;
	double x1,y1,x2,y2,x3,y3;
	double x4,y4;
	double S;
	scanf ("%d",&u);
	while (u--)
	{
		scanf ("%lf %lf %lf %lf %lf %lf",&x1,&y1,&x2,&y2,&x3,&y3);
		printf ("Case %d: ",Case++);
		x4 = x1 - x2 + x3;
		y4 = y1 + y3 - y2;
		if (x1 == x2)
			S = fabs(y2 - y1) * fabs(x1 - x4);
		else if (y1 == y2)
			S = fabs(x2-x1) * fabs(y4-y1);
		else
		{
			double l,h;
			double k;
			l = sqrt((x1-x2)*(x1-x2) + (y1-y2)*(y1-y2));
			k = (y2-y1) / (x2-x1);
			S = fabs((y4-k*x4)-(y1-k*x1)) / (sqrt(k*k+1)) * l;
		}
		printf ("%.lf %.lf %.lf\n",x4,y4,S);
	}
	return 0;
}
本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2025-08-26,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • Input
  • Output
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档