点击打开题目
1045 - Digits of Factorial
PDF (English) | Statistics | Forum |
---|
Time Limit: 2 second(s) | Memory Limit: 32 MB |
---|
Factorial of an integer is defined by the following function
f(0) = 1
f(n) = f(n - 1) * n, if(n > 0)
So, factorial of 5 is 120. But in different bases, the factorial may be different. For example, factorial of 5 in base 8 is 170.
In this problem, you have to find the number of digit(s) of the factorial of an integer in a certain base.
Input starts with an integer T (≤ 50000), denoting the number of test cases.
Each case begins with two integers n (0 ≤ n ≤ 106) and base (2 ≤ base ≤ 1000). Both of these integers will be given in decimal.
For each case of input you have to print the case number and the digit(s) of factorial n in the given base.
Sample Input | Output for Sample Input |
---|---|
5 5 10 8 10 22 3 1000000 2 0 100 | Case 1: 3 Case 2: 5 Case 3: 45 Case 4: 18488885 Case 5: 1 |
题目要求n的阶乘变成k进制后的位数。如5的阶乘变成8进制是170,三位数。
我们来考虑一下k进制是怎么由十进制转化得到的——对了,辗转相除法。每一次除以k的余数作为一位数。
那么我们可以列如下方程:
n! <= k^x
求出最小的x就是结果了。
我们还是需要化简:两边同时求log
得:logn! <= x*logk
把n的阶乘分开写:log1 + log2 + ... + logn <= x*logk
那么x就很明显了,做个除法向上取整就行了。
然后要注意直接for循环求会TLE,应该先打表预处理一下。
代码如下:
#include <stdio.h>
#include <cstring>
#include <cmath>
#include <queue>
#include <algorithm>
using namespace std;
#define PI acos(-1)
#define INF 0x3f3f3f3f
#define CLR(a,b) memset(a,b,sizeof(a))
#define LL long long
double a[1000000+11];
void getlog()
{
a[0] = a[1] = 0;
for (int i = 2 ; i <= 1000000 ; i++)
a[i] = a[i-1] + log((double)i);
}
int main()
{
getlog();
int n,k;
int u;
int Case = 1;
scanf ("%d",&u);
while (u--)
{
scanf ("%d %d",&n,&k);
printf ("Case %d: ",Case++);
if (n == 0)
{
puts("1");
continue;
}
double ans = a[n];
ans = ans / (log((double)k));
if (ans != (int)ans)
ans = (int)ans + 1;
printf ("%.lf\n",ans);
}
return 0;
}