点击打开题目
Euler is a well-known matematician, and, among many other things, he discovered that the formula n 2 + n + 41 produces a prime for 0 ≤ n < 40. For n = 40, the formula produces 1681, which is 41 ∗ 41. Even though this formula doesn’t always produce a prime, it still produces a lot of primes. It’s known that for n ≤ 10000000, there are 47,5% of primes produced by the formula! So, you’ll write a program that will output how many primes does the formula output for a certain interval.
Input Each line of input will be given two positive integer a and b such that 0 ≤ a ≤ b ≤ 10000. You must read until the end of the file.
Output For each pair a, b read, you must output the percentage of prime numbers produced by the formula in this interval (a ≤ n ≤ b) rounded to two decimal digits.
Sample Input 0 39 0 40 39 40
Sample Output 100.00 97.56 50.00
题意就是说用 n^2 + n +41 这个公式出来的数是素数的概率。
对0~10000打一个表就行了。
输出的时候注意四舍五入(这一点特别坑)
代码如下:
#include <stdio.h>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
#define CLR(a,b) memset(a,b,sizeof(a))
#define INF 0x3f3f3f3f
#define LL long long
#define f(x) (x*x+x+41)
int sum[10000+11];
bool isPrime(int x)
{
int endd = sqrt(x);
for (int i = 2 ; i <= endd ; i++)
{
if (x % i == 0)
return false;
}
return true;
}
void getPrime()
{
sum[0] = 1;
for (int i = 1 ; i <= 10000 ; i++)
{
if (isPrime(f(i)))
sum[i] = sum[i-1] + 1;
else
sum[i] = sum[i-1];
}
}
int main()
{
getPrime();
int n;
int l,r;
double ans;
while (scanf ("%d %d",&l,&r) != EOF)
{
if (l == 0)
ans = (double)(sum[r]) / (r+1);
else
ans = (double)(sum[r] - sum[l-1]) / (r - l + 1);
ans = (int)(ans*10000+0.5) / 100.0;
printf ("%.2lf\n",ans);
}
return 0;
}