首页
学习
活动
专区
圈层
工具
发布
社区首页 >专栏 >【LightOJ】1067 - Combinations(Lucas & 逆元)

【LightOJ】1067 - Combinations(Lucas & 逆元)

作者头像
FishWang
发布2025-08-27 09:56:57
发布2025-08-27 09:56:57
1980
举报

点击打开题目

1067 - Combinations

PDF (English)

Statistics

Forum

Time Limit: 2 second(s)

Memory Limit: 32 MB

Given n different objects, you want to take k of them. How many ways to can do it?

For example, say there are 4 items; you want to take 2 of them. So, you can do it 6 ways.

Take 1, 2

Take 1, 3

Take 1, 4

Take 2, 3

Take 2, 4

Take 3, 4

Input

Input starts with an integer T (≤ 2000), denoting the number of test cases.

Each test case contains two integers n (1 ≤ n ≤ 106), k (0 ≤ k ≤ n).

Output

For each case, output the case number and the desired value. Since the result can be very large, you have to print the result modulo 1000003.

Sample Input

Output for Sample Input

3 4 2 5 0 6 4

Case 1: 6 Case 2: 1 Case 3: 15

直接套用Lucas定理的公式就行了。具体见下一篇博客,写了个总结。

代码如下:

代码语言:javascript
复制
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define CLR(a,b) memset(a,b,sizeof(a))
#define INF 0x3f3f3f3f
#define LL long long
LL mod = 1000003;
LL fac[1000000+11] = {1,1};
void getfac()		//打一个阶乘表 
{
	for (int i = 2 ; i <= 1000000 ; i++)
		fac[i] = fac[i-1] * i % mod;
}
LL quick(LL n , LL m)		//求快速幂 
{
	LL ans = 1;
	n %= mod;
	while (m)
	{
		if (m & 1)
			ans = ans * n % mod;
		n = n * n % mod;
		m >>= 1;
	}
	return ans;
}
LL C(LL n , LL k)		//费马小定理求逆元 
{
	if (k > n)
		return 0;
	else
		return fac[n] * (quick(fac[k] * fac[n-k] % mod , mod - 2)) % mod;
}
LL Lucas(LL n,LL k)		//Lucas定理递归 
{
	if (k == 0)		//递归终止条件 
		return 1;
	else
		return C(n % mod , k % mod) * Lucas(n / mod , k / mod) % mod;
}
int main()
{
	getfac();
	LL n,k;
	int Case = 1;
	int u;
	scanf ("%d",&u);
	while (u--)
	{
		scanf ("%lld %lld",&n,&k);
		printf ("Case %d: %lld\n",Case++,Lucas(n,k));
	}
	return 0;
}
本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2025-08-26,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • Input
  • Output
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档