点击打开题目
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 3564 Accepted Submission(s): 1484
Problem Description
Given a positive integer N, your task is to calculate the sum of the positive integers less than N which are not coprime to N. A is said to be coprime to B if A, B share no common positive divisors except 1.
Input
For each test case, there is a line containing a positive integer N(1 ≤ N ≤ 1000000000). A line containing a single 0 follows the last test case.
Output
For each test case, you should print the sum module 1000000007 in a line.
Sample Input
3
4
0Sample Output
0
2Author
GTmac
Source
2010 ACM-ICPC Multi-University Training Contest(7)——Host by HIT
如果暴力用容斥原理计算会超时,但是我觉得思路不错。
然后说一下这道题的正解:在数论书上有个公式,计算小于 n 且与 n 互质的数的和。
公式如下:n * Eular ( n ) / 2 (Eular()表示 n 的欧拉函数值)
代码如下:
#include <cstdio>
__int64 mod = 1e9+7;
int Eular(int n)
{
int ans = n;
for (int i = 2 ; i * i <= n ; i++)
{
if (n % i == 0)
{
ans -= ans / i;
while (n % i == 0)
n /= i;
}
}
if (n > 1)
ans -= ans / n;
return ans;
}
int main()
{
int n;
__int64 ans;
while (~scanf ("%d",&n) && n)
{
if (n == 1)
{
printf ("0\n");
continue;
}
ans = ((__int64)(n - 1) * n / 2 - (__int64)n * Eular(n) / 2) % mod; //套用公式
printf ("%I64d\n",ans);
}
return 0;
}