Catch That Cow
Time Limit: 2000MS | Memory Limit: 65536K | |
|---|---|---|
Total Submissions: 68324 | Accepted: 21515 |
Description
Farmer John has been informed of the location of a fugitive cow and wants to catch her immediately. He starts at a point N (0 ≤ N ≤ 100,000) on a number line and the cow is at a point K (0 ≤ K ≤ 100,000) on the same number line. Farmer John has two modes of transportation: walking and teleporting.
* Walking: FJ can move from any point X to the points X - 1 or X + 1 in a single minute * Teleporting: FJ can move from any point X to the point 2 × X in a single minute.
If the cow, unaware of its pursuit, does not move at all, how long does it take for Farmer John to retrieve it?
Input
Line 1: Two space-separated integers: N and K
Output
Line 1: The least amount of time, in minutes, it takes for Farmer John to catch the fugitive cow.
Sample Input
5 17Sample Output
4Hint
The fastest way for Farmer John to reach the fugitive cow is to move along the following path: 5-10-9-18-17, which takes 4 minutes.
Source
USACO 2007 Open Silver
搜索变化数的时候,注意不要让数字越界(无论是越最大值还是越到-1)
代码如下:
#include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
#define MAX 200222
using namespace std;
int n,k;
int map[MAX];
struct node
{
int num,stp;
}a,b;
int bfs()
{
queue<node>q;
a.num = n;
a.stp = 0;
map[n] = 1;
q.push(a);
while (1)
{
a = q.front();
q.pop();
for (int i = 0;i < 3;i++)
{
if (i == 0)
{
b.num = a.num+1;
if (b.num == k)
return a.stp+1;
if (b.num < MAX-200 && map[b.num] == 0)
{
b.stp = a.stp+1;
map[b.num] = 1;
q.push(b);
}
}
else if (i == 1)
{
b.num = a.num-1;
if (b.num == k)
return b.stp;
if (b.num < MAX-200 && b.num>=0 && map[b.num] == 0) //这里要注意不要让num为-1
{
b.stp = a.stp+1;
map[b.num] = 1;
q.push(b);
}
}
else
{
b.num = a.num*2;
if (b.num == k)
return b.stp;
if (b.num < MAX-200 && map[b.num] == 0)
{
b.stp = a.stp+1;
map[b.num] = 1;
q.push(b);
}
}
}
}
}
int main()
{
int ans;
while (~scanf ("%d %d",&n,&k))
{
memset (map,0,sizeof(map));
if (n >= k)
printf ("%d\n",n-k);
else
{
ans = bfs();
printf ("%d\n",ans);
}
}
return 0;
}